Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection

By: Lu, WB (Lu, Wenbo) [1]; Qin, XY (Qin, Xiaoyun) [1]; Asiri, AM (Asiri, Abdullah M.) [1, 2, 3]; Al-Youbi, AO (Al-Youbi, Abdulrahman O.) [2, 3]; Sun, XP (Sun, Xuping) [1, 2, 3]

View ResearcherID and ORCID

ANALYST
Volume: 138 Issue: 2 Pages: 417-420
DOI: 10.1039/c2an36138h
Published: 2013
View Journal Impact

Abstract
The present communication reports on the first use of commercially available three-dimensional porous Ni foam (NF) as a novel electrochemical sensing platform for nonenzymatic glucose detection. NF not only acts as a working electrode, but also functions as an effective electrocatalyst for electrooxidation of glucose. The sensor exhibits high selectivity toward glucose. The linear range and limit of detection were 0.05-7.35 mM (R = 0.995) and 2.2 μM with a signal-to-noise ratio of 3, respectively. The application of this glucose sensor in human blood serum has also been demonstrated successfully.

Keywords
KeyWords Plus: AG NANOPARTICLES; GRAPHENE OXIDE; ELECTROCHEMICAL DETECTION; H2O2; SENSOR; ELECTRODES, REDUCTION; BIOSENSOR

Author Information
Reprint Address: Sun, XP (reprint author)

Addresses:

Organization-Enhanced Name(s)
King Abdulaziz University

Organization-Enhanced Name(s)
King Abdulaziz University

E-mail Addresses: sunxp@ciac.jl.cn

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Natural Science Foundation of China</td>
<td>21175129</td>
</tr>
<tr>
<td>National Basic Research Program of China</td>
<td>2011CB835800</td>
</tr>
<tr>
<td>Scientific and Technological Development Plan Project of Jilin Province</td>
<td>20100534</td>
</tr>
</tbody>
</table>

Citation Network
58 Times Cited
25 Cited References
View Related Records
Create Citation Alert
(data from Web of Science Core Collection)

All Times Cited Counts
61 in All Databases
58 in Web of Science Core Collection
8 in BIOSIS Citation Index
3 in Chinese Science Citation Database
0 in Data Citation Index
0 in Russian Science Citation Index
0 in SciELO Citation Index

Usage Count
Last 180 Days: 6
Since 2013: 168
Learn more

Most Recent Citation
View All

This record is from:
Web of Science Core Collection
- Science Citation Index Expanded

Suggest a correction
If you would like to improve the quality of the data in this record, please suggest a correction.