Separation of Y from Sr by zirconium vanadate gel ion-exchanger sorbent: kinetics and thermodynamic study

By: El-Shahawi, MS (El-Shahawi, M. S.)[1,2]; Kadi, MW (Kadi, M. W.)[3]; El-Khoully, SH (El-Khoully, S. H.); Abd El-Mohty, A (Abd El-Mohty, A.)[3]; Saad, SM (Saad, S. M.)[4]; Eweda, NEA (Eweda, N. E., A.)[4]

View ResearcherID and ORCID

JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
Volume: 295 Issue: 1 Pages: 15-22
DOI: 10.1007/s10967-012-1892-x
Published: JAN 2013

Abstract
A new zirconium vanadate (Zr-V) ion-exchanger was synthesized and characterized for fast and selective separation procedure of Y-90 from Sr-89. The method was based on Y-90(III) sorption from aqueous HCl solution containing Sr-89(II) onto Zr-V gel exchanger. The kinetics of Y(III) sorption from HCl solution by Zr-V exchanger was subjected to Weber-Morris, Lagergren, Bhattacharya and Venkobachar, and Bl models. Initially, the uptake of Y(III) onto the exchanger was fast followed by kinetically first-order sorption with an overall rate constant, K (Lager) = (3.55 +/- 0.03) x 10(-4) min(-1). Film and intraparticle transport are the two steps that might influence Y(III) sorption. The negative values of Delta G of Y-90 retention dictate that, the process is a spontaneous. The negative values of Delta H and Delta S reflect the exothermic nature of Y-90(III)sorption and the random uptake of Y-90(III) onto Zr-V sorbent. Zr-V exchanger offers unique advantages of Y-90(III) retention over conventional solid sorbents in rapid and effective separation of traces of Y-90(III) from Sr. The exchanger was successfully packed in column for an effective separation of Y-90.

Keywords
Author Keywords: Yttrium(II); Strontium(II); Zirconium vanadate ion-exchanger; Retention; Kinetic models; Thermodynamic; Column
KeyWords Plus: CARRIER-FREE Y-90; SR-90-Y-90 GENERATOR; POLYURETHANE FOAMS; EXTRACTION SYSTEM; YTTRIUM; RESIN; WATER; RADIOIMMUNOTHERAPY; PRECONCENTRATION; CHROMATOGRAPHY

Author Information
Reprint Address: El-Shahawi, MS (reprint author)
Mansoura Univ, Fac Sci Damiatta, Dept Chem, Mansoura, Egypt.

Addresses:
Organization-Enhanced Name(s)
King Abdulaziz University
[3] Atom Energy Author, Dept Radioact Isotopes & Generators, Hot Labs Ctr, Cairo, Egypt

E-mail Addresses: mohammad_el_shahawi@yahoo.co.uk

4 Times Cited
47 Cited References
View Related Records

Usage Count
Last 180 Days: 1
Since 2013: 12
Learn more

Most Recent Citation
El-Shahawi, M. S. Retention profile and chromatographic separation of Y3+ from Sr2+ by Chelex-100 (cation ion exchanger) physically immobilized with ammonium ion. JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, NOV 2016.
View All

This record is from:
Web of Science Core Collection - Science Citation Index Expanded

Suggest a correction
If you would like to improve the quality of the data in this record, please suggest a correction.