STAR FORMATION IN 30 DORADUS

Guido De Marchi1, Francesco Parise2, Nino Panagia3,4, Giacomo Beccari5, Marco Sirianni6, Morten Andersen7, Max Mutche8, Bruce Balick9, Michael A. Dopita9,10, Jay A. Frogel11,25, Bradley C. Whitmore3, Howard Bond11, Daniela Calzetti12, C. Marcella Carollo13, Michael J. Disney14, Donald N. B. Hall15, Jon A. Holtzman16, Randy A. Kimble17, Patrick J. McCarthy17, Robert W. O’Connell18, Abhijit Saha19, Joseph I. Silk20, John T. Trauger21, Alistair R. Walker22, Rogier A. Windhorst23, and Eric T. Young24

Show affiliations
gdemarchi@rssd.esa.int

European Space Agency, Space Science Department, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands
Istituto di Astrofisica Spaziale e Fisica Cosmica, Via Gobetti 101, 40129 Bologna, Italy
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
INAF-CT, Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy
Supernova Limited, OYV #131, Northsound Road, Virgin Gorda, British Virgin Islands
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA
Mount Stromlo and Siding Spring Observatories, Research School of Astronomy & Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia
Astronomy Department, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
Galaxies Unlimited, 8726 Hickory Bend Trail, Potomac, MD 20854, USA
Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA
School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, UK
Department of Astronomy, New Mexico State University, Las Cruces, NM 88003, USA
NASA-Goddard Space Flight Center, Greenbelt, MD 20771, USA
Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101-1292, USA
Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325, USA
National Optical Astronomy Observatories, Tucson, AZ 85726-6732, USA
Department of Physics, University of Oxford, Oxford OXI 3PU, UK
NASA-Jet Propulsion Laboratory, Pasadena, CA 91109, USA
Cerro Tololo Inter-American Observatory, La Serena, Chile
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA
SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035, USA
Also at: Astronomy Department, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.

Abstract

Using observations obtained with the Wide-Field Camera 3 on board the Hubble Space Telescope, we have studied the properties of the stellar populations in the central regions of 30 Dor in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterize and quantify this effect using young massive main-sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main-sequence (PMS) stars by looking for objects with a strong (>4σ) Hα excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one-third of these objects are younger than ~4 Myr, compatible with the age of the massive stars in the central ionizing cluster R 136, whereas the rest have ages up to ~30 Myr, with a median age of ~12 Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very center of the cluster. We attribute this latter effect to photo-evaporation of the older circumstellar disks caused by the massive ionizing members of R 136.

Footnote

* Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

Keywords
galaxies: star clusters: individual (30 Dor); galaxies: stellar content; Magellanic Clouds; stars: formation; stars: pre-main sequence

Dates

Received 2011, accepted for publication 2011 September 20
Published 2011 September 20

Your last 10 viewed