Facile synthesis and optical properties of Co₃O₄ nanostructures by the microwave route

Reem Al-Tuwirqi a, A.A. Al-Ghamdi a, Nadia Abdel Aal b, Ahmad Umar c, Waleed E. Mahmoud a, ∗

a Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
b Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
c Centre for Advanced Materials and Nano-Engineering (CAMNE), Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia

ABSTRACT

Cobalt oxide (Co₃O₄) nanoplatelet shape like nanostructures have been successfully synthesized through a simple microwave route for the first time using cobalt acetate, NaOH and citric acid at 200 °C for 30 min. The structure and morphology of as-prepared Co₃O₄ nanoplatelets are characterized by means of powder X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), and scanning electron microscope (SEM). XRD measurements indicate that the product has a perfect crystalline cubic phase of Co₃O₄ with a lattice constant a = 8.082 Å. The SEM images show that the obtained Co₃O₄ nanopowder consists of nanoplatelets with diameter 125 nm and thickness 20 nm. Energy-dispersive X-ray spectroscopy (EDS) show that the composition of Co₃O₄ is stoichiometric. Room temperature photoluminescence measurement is exhibited by a strong UV emission and a suppressed green emission, confirming the good optical properties for the as-prepared Co₃O₄ nanoplatelets.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, nanostructure metal oxide semiconductors have attracted much attention due to their technological applications and intriguing properties [1]. The unique physical properties of nanoparticles, due to surface or quantum-size effects, have recently been the subject of intense research, in terms of both scientific interest and industrial application and present new challenges.