KKM mappings in cone b-metric spaces

N. Hussaina, M.H. Shahb,*

a Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
b Department of Mathematical Sciences, LUMS, DHA Lahore, Pakistan

Abstract

In this paper we establish some topological properties of the cone b-metric spaces and then improve some recent results about KKM mappings in the setting of a cone b-metric space. We also prove some fixed point existence results for multivalued mappings defined on such spaces.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cone metric spaces were introduced in [1]. A similar notion was also considered by Rzepecki in [2]. After carefully defining convergence and completeness in cone metric spaces, the authors in [1] proved some fixed point theorems of contractive mappings. Recently, more fixed point results in cone metric spaces appeared in [3,4]. Topological questions in cone metric spaces were studied in [3] where it was proved that every cone metric space is a first-countable topological space. Hence, continuity is equivalent to sequential continuity and compactness is equivalent to sequential compactness. In this work, with the structure of a cone b-metric space, we shall establish some topological properties of the cone b-metric spaces. We also prove and extend some results of Khamsi and Hussain [5] and illustrate our work in this setting with examples.

2. Basic definitions and results

First, let us start by making some basic definitions.

Let E be a real Banach space. A subset P of E is called a cone if and only if:

(i) P is closed, nonempty and $P \neq \{\theta\}$;
(ii) $a, b \in \mathbb{R}$, $a \geq 0$, and $x, y \in P$ imply $ax + by \in P$;
(iii) $P \cap (-P) = \{\theta\}$.

Given a cone $P \subset E$, we define a partial ordering \preceq on E with respect to P by $x \preceq y$ if and only if $y - x \in P$. We shall write $x < y$ to indicate that $x \preceq y$ but $x \neq y$, while $x \ll y$ will stand for $y - x \in \text{int}P$ (interior of P). A cone $P \subset E$ is called normal if there is a number $k > 0$ such that for all $x, y \in E$, $\theta \preceq x \preceq y$ implies $\|x\| \leq k \|y\|$. The least positive number satisfying the

*Corresponding author. Tel.: +92 42 35608949; fax: +92 42 35722591.
E-mail addresses: nhusain@kau.edu.sa (N. Hussain), mshah@lums.edu.pk (M.H. Shah).

0898-1221/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2011.06.004