KKM mappings in cone b-metric spaces

N. Hussain ${ }^{\text {a }}$, M.H. Shah ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, LUMS, DHA Lahore, Pakistan

ARTICLE INFO

Article history:

Received 18 March 2011
Received in revised form 26 May 2011
Accepted 1 June 2011

Keywords:

KKM property
Fixed point
Cone b-metric space
Admissible set
Totally bounded set
Approximate fixed point property

Abstract

In this paper we establish some topological properties of the cone b-metric spaces and then improve some recent results about KKM mappings in the setting of a cone b-metric space. We also prove some fixed point existence results for multivalued mappings defined on such spaces.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cone metric spaces were introduced in [1]. A similar notion was also considered by Rzepecki in [2]. After carefully defining convergence and completeness in cone metric spaces, the authors in [1] proved some fixed point theorems of contractive mappings. Recently, more fixed point results in cone metric spaces appeared in [3,4]. Topological questions in cone metric spaces were studied in [3] where it was proved that every cone metric space is a first-countable topological space. Hence, continuity is equivalent to sequential continuity and compactness is equivalent to sequential compactness. In this work, with the structure of a cone b-metric space, we shall establish some topological properties of the cone b-metric spaces. We also prove and extend some results of Khamsi and Hussain [5] and illustrate our work in this setting with examples.

2. Basic definitions and results

First, let us start by making some basic definitions.
Let E be a real Banach space. A subset P of E is called a cone if and only if:
(i) P is closed, nonempty and $P \neq\{\theta\}$;
(ii) $a, b \in R, a, b \geq 0$, and $x, y \in P$ imply $a x+b y \in P$;
(iii) $P \cap(-P)=\{\theta\}$.

Given a cone $P \subset E$, we define a partial ordering \preceq on E with respect to P by $x \preceq y$ if and only if $y-x \in P$. We shall write $x \prec y$ to indicate that $x \preceq y$ but $x \neq y$, while $x \ll y$ will stand for $y-x \in \operatorname{intP}$ (interior of P). A cone $P \subset E$ is called normal if there is a number $k>0$ such that for all $x, y \in E, \theta \preceq x \preceq y$ implies $\|x\| \leq k\|y\|$. The least positive number satisfying the

[^0]
[^0]: * Corresponding author. Tel.: +92 42 35608949; fax: +92 4235722591.

 E-mail addresses: nhusain@kau.edu.sa (N. Hussain), mshah@lums.edu.pk (M.H. Shah).

