Biochemical Properties of α -Amylase from Peel of *Citrus* sinensis cv. Abosora

Saleh Ahmed Mohamed • Ehab A. Drees • Mohamed O. El-Badry • Afaf S. Fahmy

Received: 5 March 2009 / Accepted: 9 November 2009 / Published online: 26 November 2009 © Springer Science+Business Media, LLC 2009

Abstract α -Amylase activity was screened in the peel, as waste fruit, of 13 species and cultivars of Egyptian citrus. The species Citrus sinensis cv. Abosora had the highest activity. α -Amylase AI from Abosora peel was purified to homogeneity using anion and cation-exchange, and gel filtration chromatographies. Molecular weight of α -amylase AI was found to be 42 kDa. The hydrolysis properties of α -amylase AI toward different substrates indicated that corn starch is the best substrate. The α -amylase had the highest activity toward glycogen compared with amylopectin and dextrin. Potato starch had low affinity toward α -amylase AI but it did not hydrolyze β -cyclodextrin and dextran. Apparent Km for α -amylase AI was 5 mg (0.5%) starch/ml. α -Amylase AI showed optimum activity at pH 5.6 and 40 °C. The enzyme was thermally stable up to 40 °C and inactivated at 70 °C. The effect of mono and divalent metal ions were tested for the α -amylase AI. Ba²⁺ was found to have activating effect, where as Li⁺ had negligible effect on activity. The other metals caused inhibition effect. Activity of the α -amylase AI was increased one and half in the presence of 4 mM Ca^{2+} and was found to be partially inactivated at 10 mM Ca^{2+} . The reduction of starch viscosity indicated that the enzyme is endoamylase. The results suggested that, in addition to citrus peel is a rich source of pectins and flavanoids, α -amylase AI from orange peel could be involved in the development and ripening of citrus fruit and may be used for juice processing.

Keywords α -Amylase · Citrus sinensis cv. Abosora · Peel · Purification · Properties

S. A. Mohamed • M. O. El-Badry • A. S. Fahmy Molecular Biology Department, National Research Center, Dokki, Cairo, Egypt

E. A. Drees Biochemistry division, Chemistry Department, Faculty of Science, Fayoum University, Fayoum, Egypt

S. A. Mohamed (\boxtimes)

Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia e-mail: saleh38@hotmail.com