

Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Low-temperature synthesis of nanocrystalline NiCuZn ferrite and the effect of Cr substitution on its electrical properties

M.A. Gabal*, Y.M. Al Angari

Chemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia

A R T I C L E I N F O

Article history: Received 29 July 2009 Received in revised form 23 May 2010 Available online 1 June 2010

Keywords: NiCuZn ferrite XRD Mössbauer Cr substitution Conductivity

ABSTRACT

In this study, nano-sized ferrites of compositions (Ni_{0.6}Cu_{0.20}Zn_{0.20}Fe_{2-x}Cr_xO₄), where x=0-1.0, were synthesized through nitrate-citrate auto-combustion method at relatively low temperature. XRD revealed the formation of nano-sized ferrite particles with cubic spinel structure. An exception was obtained for samples with Cr content ≤ 0.2 , where weak diffraction peaks attributed to the presence of CuO and Fe₂O₃ were appeared. The average crystallite sizes are much dependent on the chromium content and were found to decrease with its increase. The lattice parameter (*a*) slightly decreases with Cr substitution, which can be explained on the basis of the relative ionic radii of Cr³⁺ and Fe³⁺ ions. X-ray density was found also to decrease slightly with increase in chromium content, which indicates lower densification by the addition of Cr. FT-IR measurements show the characteristic ferrite bands. The Mössbauer spectra varied from Zeeman sextets to a relaxed doublet by increase in Cr content, which indicates a decrease in the hyperfine field at the octahedral site. Electrical property measurements revealed that Cr³⁺ ions do not participate in conduction process but limit the degree of Fe³⁺-O²⁻-Fe³⁺ conduction resulting in a decrease in the conductivity and increase in conduction activation energy. © 2010 Elsevier B.V. All rights reserved.