Aqueous synthesis and characterization of CdTe@Co(OH)$_2$ (core–shell) composite nanoparticles

M.S. Abd El-sadeka, J. Ram Kumara, S. Moorthy Babua, M. Salim El-Hamidyb

a Crystal Growth Centre, Anna University, Chennai 25, India
b Electron Microscope Unit, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Article history:
Received 3 December 2009
Received in revised form 29 April 2010
Accepted 8 July 2010

Abstract

Multi-functional CdTe@Co(OH)$_2$ core–shell nanoparticles were synthesized in aqueous solution by a seed-mediated growth approach. Initially, CdTe nanocrystals were synthesized with bi-functional molecule mercaptoacetic acid as a stabilizer. The Co$^{2+}$ in the form of Co(NO$_3$)$_2$ was added to CdTe nanocrystals in aqueous solution and slowly hydrolyzed to deposit a layer of hydroxide (Co(OH)$_2$) onto the luminescent CdTe nanocrystals as a core in the presence of stabilizer at pH \approx 11.2. The synthesized CdTe@Co(OH)$_2$ core–shell composite nanoparticles were characterized with XRD, EDAX, TEM, FT-IR, Raman, EPR, and thermal analysis (TG/DTG curves). The effect of refluxing time and the concentration of Co$^{2+}$ on the optical properties of these samples were evaluated using UV–Visible absorption and photoluminescence analysis. The emission peak of the (CdTe@Co(OH)$_2$) composite nanoparticles shifted to 626 nm from 605 nm (CdTe seed). The sizes of CdTe and CdTe@Co(OH)$_2$ composite nanoparticles averaged about 3.43 nm and 6.12 nm, respectively.

© 2010 Published by Elsevier B.V.