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In-depth comparison of somatic 
point mutation callers based on 
different tumor next-generation 
sequencing depth data
Lei Cai1,2, Wei Yuan1, Zhou Zhang1,3, Lin He1,4 & Kuo-Chen Chou2,5

Four popular somatic single nucleotide variant (SNV) calling methods (Varscan, SomaticSniper, Strelka 
and MuTect2) were carefully evaluated on the real whole exome sequencing (WES, depth of ~50X) 
and ultra-deep targeted sequencing (UDT-Seq, depth of ~370X) data. The four tools returned poor 
consensus on candidates (only 20% of calls were with multiple hits by the callers). For both WES and 
UDT-Seq, MuTect2 and Strelka obtained the largest proportion of COSMIC entries as well as the lowest 
rate of dbSNP presence and high-alternative-alleles-in-control calls, demonstrating their superior 
sensitivity and accuracy. Combining different callers does increase reliability of candidates, but narrows 
the list down to very limited range of tumor read depth and variant allele frequency. Calling SNV on 
UDT-Seq data, which were of much higher read-depth, discovered additional true-positive variations, 
despite an even more tremendous growth in false positive predictions. Our findings not only provide 
valuable benchmark for state-of-the-art SNV calling methods, but also shed light on the access to more 
accurate SNV identification in the future.

Rapid advancement in next-generation sequencing (NGS) technologies has brought about a more comprehen-
sive dissection of genomic variations at a more affordable expense than ever before. NGS has recently become 
a routine to reveal subtle genetic variations in cancer genomes1–3. By applying NGS on tumor-normal tissue 
pairs, multiple research projects, including the Cancer Genome Atlas (TCGA), the International Cancer Genome 
Consortium (ICGC), and the Cancer Genome Project (CGP), have characterized critical genomic variations 
involved in the occurrence and development of cancer. It is widely considered that certain ancestral cells, which 
gain enough somatic mutations to cause dysregulations in genome stability/repair and cell proliferation, acquire 
selective advantages, reproduce abnormally into cell populations with a catalog of mutations at diverse frequen-
cies, and initiate and develop tumor4. Among the different types of genetic variations, somatic single nucleotide 
variants (SNVs), the most frequent type in cancer genomes, are single nucleotide mutations only occurring in 
tumor samples not in normal samples of a patient5. Due to their extensive existence and remarkable biological 
functions, somatic SNVs have attracted much attention in cancer research, which are supposed to contain crucial 
“driver” mutations in oncogenesis and tumor progression6,7.

Since different algorithms using different information have their own strengths and weaknesses, it has been 
suggested to use the consensus outputs from multiple algorithms to obtain a more reliable prediction for a mis-
sense variant8–10. Accordingly, although identifying somatic SNVs from NGS data is quite straightforward and 
simple theoretically, it still encounters considerable challenges, such as: sample degradation, polymerase chain 
reaction (PCR) artifacts, inadequate coverage, position-specific error rate and read alignment errors. Moreover, 
additional issues must be addressed for somatic SNV calling in sample pairs, such as distinguishing somatic muta-
tions from germline variations, and handling genetic heterogeneity and tissue impurity. To meet these challenges 
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and reduce false predictions, scientists have adopted distinct strategies and statistical models and developed a 
considerable number of software tools or algorithms for detection of somatic mutations, such as the currently 
most popular somatic SNV callers: Varscan, SomaticSniper, Strelka, and MuTect211–16.

Most of these algorithms directly compare tumor-normal pairs at every locus17, label sites with minor allele 
frequencies significantly higher in tumor samples compared to those in normal samples as somatic variants, and 
meanwhile exclude putative germline variants and loss of heterozygosity (LOH) events from the final candidate 
sets. Although each of the new tools has different updated versions after years of improvement, they still have 
poor consensus in realistic scenarios18,19. Moreover, due to incomplete experimental evaluation and lack of an 
established gold-standard method for massive somatic SNV calling featuring with highest sensitivity and speci-
ficity, their relative merits in real applications are largely unknown.

Although a few efforts have been made using real or simulated sequencing data to compare and/or bench-
mark different callers20,21, the drawbacks of these comparisons or benchmarks may seriously hinder the thorough 
assessment of SNV calling methods. First, although Sanger sequencing is widely viewed as a reliable experimental 
verifying method, it is not only expensive and laborious but also inappropriate for alleles of low fraction (e.g., 
< 20%)22,23. It may also restrict the scale of validation to only 100~300 sites and brings forth potential bias in 
assessment, since NGS may generate hundreds to thousands of candidates for a single tumor-normal tissue pair. 
Moreover, the false negatives are difficult to be validated by this method. Second, although simulated data are 
widely used for their easy access, low cost, and clear constitution of positives and negatives, several common arti-
facts are beyond current simulation yet, such as: the non-random distribution of variants, incomplete reference 
genome, and copy number variations (CNVs)24. Since simulation datasets are collections of synthetic reads based 
on simple generative models while real datasets are much more complex and harder to call variation on, they may 
not truly tell the same story as real sequencing data25. Third, as for the use of indirect properties of mutation calls 
instead of direct validation in these studies, multiple metrics of the prediction sets must be weighed to estimate 
the performance of each program rather than simply counting overlaps between different methods or calculating 
the average read depths. Furthermore, most previous studies are undertaken on fairly limited quantity of data, 
which may further impair the trustworthiness of these studies. Meanwhile, targeted sequencing with ultra-deep 
read depth has been applied rapidly during the past few years. Typical whole exome sequencing (WES) provides 
only up to ~60X read depth and works unsatisfactorily in calling low fraction alleles. Using targeted gene panel 
sequencing that allows read depth of more than 500X, researchers are able to unveil mutations with rare allelic 
frequency, which is of great significance to solve tumors substantial heterogeneity. However, till now, few studies 
have been conducted to compare the performance of these somatic SNV detection tools based on different tumor 
NGS depth data, especially the ultra-deep targeted sequencing (UDT-Seq) data.

Considering these constraints, we set out to evaluate the performance of most popular somatic SNV callers 
(Varscan12, SomaticSniper14, Strelka13, and MuTect215) on real NGS data26. The WES data and UDT-Seq data were 
used as input to each caller separately, and outputs were carefully gaged by multiple metrics. Then, we analyzed 
the merits and shortcomings of UDT-Seq compared to WES in view of somatic SNV detection. Furthermore, 
based on the current in-depth analysis, Cake27, a pipeline for the integrated analysis of somatic SNVs in cancer 
genomes, was utilized to evaluate the combination of diverse methodologies.

Results
Calling of four somatic SNV callers. We applied the four somatic SNV callers (Varscan, SomaticSniper, 
Strelka and MuTect2) on the WES (32 samples) and target sequencing data (54 samples) from totally 57 matched 
tumor-normal tissue pairs. Sequencing summary is available in Supplementary Table S1. In order to follow the 
original intention of developers, all tools were executed with default parameters and filters recommended by the 
caller manuals. High-confidence calls produced by each caller then underwent further analysis.

On the same sample, callers varied dissimilarly in the amount of SNV candidates, and on the same sample 
and caller, different depth caused different amount of candidates, as shown in Fig. 1. For example, among four 
callers Strelka obtained the largest candidate set in samples XHDG04, XHDG05, XHDG07 and XHDG27 under 
exome sequencing, while in a number of extra samples besides XHDG04, XHDG05, XHDG07 and XHDG27 
under UDT-Seq. In total, Varscan and SomaticSniper detected more SNV candidates (7957 and 9826) based on 
WES data, whereas Strelka and MuTect2 acquired more candidates (4741 and 2435) based on UDT-Seq data 
(Supplementary Fig. S1). The overlaps between the four sets of SNV candidates are illustrated in Fig. 2. Although 
four different callers showed quite low consistency (only 20.7% of all mutations were detected by two or more 
callers within WES data and 22.4% within UDT-Seq data), Strelka and MuTect2 shared the largest fraction 
of common candidates (2579 of 8814 within WES data and 1004 of 6172 within UDT-Seq data) and had the 
highest correlation in the number of candidates obtained from different samples (0.88/0.99 for WES/UDT-Seq, 
respectively).

Evaluation of somatic SNV callers by multiple metrics of candidate sets. In current study, 
three internal features of candidate sets were utilized in the identification of false predictions. One is the 
high-alternate-alleles-in-control (HAAIC) variants, which are excessively unreliable and are considered as likely 
false-positives. Strelka and MuTect2 revealed advantage in eliminating these counterfeits, particularly in WES 
(5.9% and 4.6%, respectively, Table 1). Interestingly, variants with high read depths found in tumor samples 
are a large fraction of HAAIC variants (Fig. 3). The other is the strand bias, which provides a very probable 
source of false-positives during calling somatic SNVs. Except for a small fraction of sites with obvious extreme 
strand bias in Varscan’s call list (3.6% and 4.4%), other call sets exhibited satisfyingly low percentage of calls 
with strand bias (Table 1). The last is the somatic SNVs occurring in normal samples of other patients more than 
twice observations. Since somatic SNV calls with more than two hits in normal tissues had a higher share of 
dbSNP entries in both WES and UDT-Seq (p <  0.001, Supplementary Table S2), somatic SNV calls with more 
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than two observations in normal controls tended to be germline polymorphisms, and thus are unreliable. Strelka 
and MuTect2 showed low percentages (~10% in WES and ~40% in UDT-Seq) of mutations with more than two 
observations in controls, while the Varscan and SomaticSniper callers obtained a larger rate of questionable SNVs 
(50.8% and 71.3% in WES and 42.7% and 67.0% in UDT-Seq, respectively, Table 1).

We also took public databases (dbSNP Human Build 13828 and COSMIC v7029) as references for evaluating 
caller performance. Candidates present in dbSNP are regarded as putative false positives caused by germline 
polymorphisms or sequencing errors19,30. Although it is not adequate to assign a single site to putative false pos-
itives solely by its appearance in dbSNP, the proportion of dbSNP entries in a candidate set implies its unreli-
ability. Similarly, sites present in COSMIC provide a reference to estimate the ratio of true-positive SNVs31,32. 
Somatic SNVs generated by each caller were annotated if they exist in COSMIC or dbSNP database. A counting 
of annotated sites is listed in Table 1. SomaticSniper returned much higher dbSNP rate (~70%) than any other 
tools in both groups, suggesting its inferior ability in false-positive control. For WES and UDT-Seq, MuTect2 
demonstrated an excellent performance with the lowest dbSNP rate (14.9% and 38.4%, respectively) and the 
highest COSMIC rate (7.1% and 13.2%, respectively) among four callers. Strelka had relatively higher dbSNP 
rate and lower COSMIC rate compared with MuTect2 (15.9% dbSNP presence and 4.8% COSMIC presence), 
even in UDT-Seq (40.6% dbSNP presence and 8.2% COSMIC presence), where it gained much more calls than 
any other tools. The dbSNP and COSMIC annotation information was mapped to the depth-VAF scatter plot 
(Supplementary Fig. S2).

A Sanger sequencing validation by the previous study24 was also employed in our benchmark. Albeit not eli-
gible to serve as a criterion for comparison of callers due to its biased choice of candidates, the Sanger sequencing 
data make a valuable reference for estimating the sensitivity of callers. The results indicated that Strelka gained a 
very close number of validated calls (47/58 validated candidates detected in WES and 60/64 in UDT-Seq) to that 
of MuTect2, while a much lower level of validation was made by Varscan and SomaticSniper (~20 candidates in 
WES and ~30 in UDT-Seq, Table 2).

Cake analysis. As different callers adopt distinct algorithms and strategies in somatic SNV calling, an 
intuitive strategy to improve the methodology in somatic mutation calling would be utilizing different callers’ 
candidate sets and generating high-confidence collections of somatic variants32,33. Here, Cake27 was used for 
combination and filtering of SNV candidate sets separately generated by Varscan, SomaticSniper, Strelka, and 
MuTect2. Finally, 2691 variants from WES data and 227 ones from UDT-Seq data were retained after Cake anal-
ysis, respectively. Compared to those given by individual callers, Cake calls had a higher rate of COSMIC entries 
(6.7% and 22.0% within WES and UDT-Seq data, respectively) and lower rates of dbSNP entries (10.4% and 
19.4%, respectively) and HAAIC calls (~ 4%), albeit at the cost of sensitivity and size of candidate sets (Table 3).

To visualize the SNV produced by Cake, we marked out those variants in the depth-VAF scatter plot 
(Supplementary Fig. S3). Cake managed to discover SNVs at widespread depths and VAF, except for those 

Figure 1. Counts of mutations detected by four sSNV callers in different patients based on WES (A) and UDT-
Seq (B) data.
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with very low depth of reads in tumor samples or low variant allele proportions. Although of limited absolute 
amount, the SNV candidates produced by Cake proved to be with higher likely true-positives and lower likely 
false-positives.

Figure 2. The relationship of mutations detected by four sSNV callers. Venn diagrams of mutations based 
on WES (A) and UDT-Seq (B) data illustrate the overlaps between mutation candidate sets. Scatter-plot 
of mutation candidate sets from each sample based on WES (C) and UDT-Seq (D) data demonstrate the 
correlation between size of mutations detected by different callers: each dot in the upper panel represents the 
number of mutations detected from each tumor-normal tissue pair, and the lower panels display the Pearson 
correlation coefficients between the two callers with font size proportional to the correlations.

Whole Exome Sequencing or WES (32 samples)

Method Varscan SomaticSniper Strelka MuTect2

Total variants 7957 9826 6441 4952

HAAIC variants 2156 (27.1%) 2319 (23.6%) 380 (5.9%) 228 (4.6%)

Variants with strand biasa 286 (3.6%) 20 (0.2%) 39 (0.6%) 10 (0.2%)

Variants with > 2 observations in controls 4042 (50.8%) 7006 (71.3%) 715 (11.1%) 560(11.3%)

Variants present in dbSNP 3724 (46.8%) 6976 (71.0%) 1024 (15.9%) 738 (14.9%)

Variants present in COSMICb 374 (4.7%) 452 (4.6%) 309 (4.8%) 352 (7.1%)

Targeted sequencing (51 samples)

Total variants 971 1699 2128 1295

HAAIC variants 179 (18.4%) 227 (13.4%) 298 (14.0%) 191 (14.7%)

Variants with strand biasa 43 (4.4%) 12 (0.7%) 62 (2.9%) 13 (1%)

Variants with > 2 observations in controls 415 (42.7%) 1139 (67.0%) 811 (38.1%) 480 (37.1%)

Variants present in dbSNP 396 (40.8%) 1151 (67.7) 864 (40.6%) 497 (38.4%)

Variants present in COSMICb 58 (6.0%) 91 (5.4%) 174 (8.2%) 171 (13.2%)

Table 1.  Multiple features used for gauging call sets produced by four sSNV callers. aPhred-scaled 
p-value >  30. bVariants present in both COSMIC and dbSNP are considered only with COSMIC entries since 
dbSNP holds a small fraction of somatic mutation.
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Comparison between WES and UDT-Seq. To assess the effect of read depth on somatic SNV discov-
ery, we compared SNV candidates located in gene regions covered by UDT-Seq from WES data to those from 
UDT-Seq data in the 23 samples that were sequenced by both methods. Totally, 2175 UDT-Seq and 182 WES SNV 
candidates were taken into comparison. UDT-Seq provided candidates in much larger amount and much wider 
spread of distribution on depth-VAF scatter plot than WES, and the sites agreed by both UDT-Seq and WES had 
relatively high read depths on each sequencing method (Fig. 4). UDT-Seq had SNV candidates with a higher rate 
of COSMIC and dbSNP entries (5.6% and 49.1%, respectively) than WES (4.9% and 23.6%, respectively), and 
produced more treacherous SNV candidates (49.7% somatic SNVs with more than two observations in control 
and 20.3% HAAIC calls; Table 4).

Discussions
The current bottleneck of NGS lies in data management and analysis due to the complex variants detection pro-
cess from huge sequencing data34. Till now, there are many mutation callers, such as: Varscan, SomaticSniper, 
Strelka and MuTect2, etc. The complexities within somatic SNV calling are caused by both dissimilar mathemat-
ical models adopted by different callers and the biological divergence underlying each sample. Here, we found 
that the same analysis tool might exhibit sharp fluctuations among samples besides different callers might vary 
differently on the same sample. For instance, somatic SNV candidate sets share impressive overlap for some sam-
ples (XHDG04, XHDG22, XHDG27, XHDG32, XHDG35, etc.), which is in agreement with some reports21,35, 
but not for other samples, which is also consistent with some studies19. Therefore, any attempts for a persuasive 

Figure 3. The depth-VAF scatter plot of SNV candidates in WES (A) and UDT-Seq (B).The Y-axis of each 
graph means the read depth of a variant in the tumor tissue, while the X-axis means the VAF of each SNF 
candidate. Triangles means SNV candidates have HAAIC. The color means SNV candidates detection methods.

Item Varscan SomaticSniper Strelka MuTect2
SNVs for Sanger 

resequencing

WES 23 (35.4%) 21 (32.3%) 47 (72.3%) 58 (89.2%) 65

Targeted sequencing 34 (50.0%) 31 (45.6%) 60 (88.2%) 64 (94.1%) 68

Table 2.  Sanger sequencing validation for SNV candidates.

Method Total variants COSMIC* dbSNP HAAIC Mean depth Mean VAF

WES 22052 1125 (5.1%) 11004 (49.9%) 4896 (22.2%) 53.21 0.33

WES after Cake 2691 180 (6.7%) 280 (10.4%) 105 (3.9%) 35.16 0.28

Targeted sequencing 4642 281 (6.1%) 2505 (54.0%) 842 (18.14%) 192.77 0.29

Targeted sequencing after Cake 227 50 (22.0%) 44 (19.4%) 9 (4.0%) 367.06 0.28

Table 3.  Comparison between candidates identified by the four callers and those by Cake.
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somatic SNV caller benchmark should be implemented on enough quantities of samples. Moreover, new versions 
of somatic SNV callers have appeared very soon. Different settings of parameters in variation detection and 
filtration of different tool version could make even larger divergences than the internal diversities of algorithms 
do. Thus, only comparing the number of somatic SNVs provided by each tool is not quite meaningful. In this 
study, we focused on the intersection and unique parts of multiple candidate sets acquired from various samples, 
tools and sequencing depths, and compared multiple properties of somatic SNV candidate sets acquired from 
the last versions of these four popular somatic SNV callers, i.e., Varscan, SomaticSniper, Strelka and MuTect2. 
Furthermore, tumors have significant heterogeneity and tumors from different tissues may have different gene 
alterations. Thus, the default settings suggested by each caller developers were used in the current study to obtain 
ideal results for individual caller.

Usually, the presence of somatic SNV in COSMIC provides a measure for the true-positive, while dbSNP 
entries, strand-biased sites, observation in normal controls, and HAAIC calls provides a measure for the 
false-positive. Multiple callers employ widely different strategies to handle these false-positive characters. 
For example, Strelka discards strand-biased somatic SNV, whereas MuTect2 and Varscan leave them to users’  
disposal17. However, since Ti/Tv ratio is variable and dependent on the cancer types20, it is not analyzed, in our 
comparison. Although MuTect2 returned fewest candidates, it had excellent capability in both control of false 
calls and discovery of potential true positives. MuTect2 refers to dbSNP database to aid its classifier in discrimi-
nation between germline and somatic variants, and turns out to be efficacious. Strelka had the second-best per-
formance close to that of MuTect2. Interestingly, Strelka predicted second least somatic SNVs in WES data, much 
less than SomaticSniper and Varscan did, whereas it gave most predictions in UDT-seq. Among the four callers, 
MuTect2 and Strelka have fairly similar performance: they have the largest consensus in somatic SNV candidate 
sets, similarly high sensitivity in detecting low-allelic-fraction somatic SNVs, and integrated effective post-calling 
filters, which were also verified by other studies22{Roberts, 2013 #37}. Varscan yielded medium specificity and 
sensitivity. Although Varscan was not efficient in low-frequency mutations detection, it exhibited advantage in 
discovering somatic SNVs with relatively high frequencies, which makes it as a beneficial supplement of MuTect2 
and Strelka. SomaticSniper returned the largest quantity of mutations in WES data, a majority of which were 
questionable predictions with a plethora of strand-biases, somatic SNVs detected in normal samples and dbSNP 
entries.

Furthermore, we also visualized the distribution of somatic SNV candidates on depth-VAF scatter plot. It was 
observed that the methods showed different preference for somatic SNV discovery and common calls detected 
by multiple methods are mainly located central of the scatter plot. In detail, MuTect2 is able to discover unique 
somatic SNVs at low depth and low VAF; Strelka favored calling somatic SNVs with higher read depth and lower 
VAF than other three callers; somatic SNVs obtained from Varscan preferred moderate tumor read depth and 
VAF; and SomaticSniper had a wide spread of somatic SNVs except those with both low depth and low VAF.

Figure 4. The intersection of SNVs obtained from WES and UDT-Seq data. The dots demonstrate SNV 
candidates from 23 tumor-normal tissue pairs undergoing both WES and UDT-Seq. sUDT-Seq: SNVs detected 
within UDT-Seq are shared with those within WES; sWES: SNVs detected within WES are shared with those 
within UDT-Seq; UDT-Seq: SNVs uniquely detected within UDT-Seq data; WES: SNVs uniquely detected 
within WES data.

Methods Total sites COSMICb dbSNP
SNVs with >2 

observations in controls HAAICc

WESa 182 10 (5.6%) 43 (23.6%) 60 (33.0%) 27 (15.1%)

Targeted sequencing 2175 680 (31.3%) 1067 (49.1%) 1081 (49.7%) 441 (20.3%)

Table 4.  SNV Candidates detected by four callers based on WES and UDT-Seq data in 23 samples. aWES 
produces SNV candidates located in gene regions covered by UDT-Seq. bVariants present in both COSMIC 
and dbSNP are considered only with COSMIC entries. cHAAIC is abbreviation for High-Alternate-Alllele-In-
Control.
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Compared to other two callers, both Strelka and MuTect2 preferred variants with low VAF, but they varied in 
choice of tumor depths. These divergences root in the underlying mechanisms of algorithms and the enormous 
heterogeneity of candidate sites. Accordingly, when benchmarking different callers, they are not exactly homoge-
neous and comparable. Some of callers may outperform the others, but this would not guarantee that they have 
a better performance in all regions of the depth-VAF scatter plot. The fact that the best-performing callers may 
return considerable fractions of suspicious calls in their high-confidence outputs was found in both our study and 
previous studies19. Thus, more sophisticated mutation-calling tools are expected in the future to be equipped with 
multiple differentiated models and algorithms, intelligently adopting different strategies in consideration of the 
variant sites’ sequencing properties (read depths, read quality, strand bias, variant allele fraction, etc.).

Owing to a lack of a priori knowledge on samples and function of callers, we accepted nearly all default 
parameters and filters of every caller, which are considered best fitting for most of the situations and reflecting 
the developers’ original intention. However, it should never be ignored that the tuning of somatic SNV detection 
parameters and the customizing filtration tremendously affect the quality and reliability of outputs19,22. Since 
all callers tested by us presented quite numerous false-positives and false-negatives, appropriate caller tuning 
and application of additional filters might be necessary for practical cancer research. Moreover, additional filters 
beyond the default filtering process of callers, which concern about multiple metrics simultaneously in judgment, 
are vitally suggested, and much more comprehensive tests and in-depth understanding of callers are required for 
carefully benchmarked and optimized somatic point mutation discovery.

From the depth-VAF scatter plots, it could also be observed that somatic SNVs detected by more than two 
methods were located in a limited region, even when MuTect2 or Strelka, which could produce a large propor-
tion of true-positive unique somatic SNV candidates, was included. This indicates that predictions generated by 
various methods disperse substantially, only considering consensus of them may be inadequate. Thus, Cake, a 
pipeline that automatically combines somatic SNV callers and conducts follow-up filtration, was used on both 
WES and UDT-Seq. somatic SNVs acquired by Cake showed larger fraction of COSMIC entries, much lower rates 
of dbSNP entries, and HAAIC calls, which indicated that Cake was able to improve the specificity and increase 
the reliability of somatic SNV calls obtained from different callers. Nevertheless, Cake may also lead to a sharp 
reduction in quantities of candidates, including those present in COSMIC database. Therefore, when applying 
this strategy, researchers should make it clear whether they are pursuing a handful of reliable mutations for fur-
ther validation or a wide genomic landscape including mutations of moderate to low fraction.

Moreover, the current study also provides insights into the effect of read depth. Although disparate in read 
depths and region of coverage, WES and UDT-Seq have no essential difference in principle and technology. 
However, trade-offs between sensitivity and specificity deeply underlie the comparison between WES and 
UDT-Seq. Calling in UDT-Seq data yields somatic SNV candidates of much larger quantity and higher diversity 
in the depth-VAF scatter plot than that in WES data, whereas a similar percentage of true positive and higher per-
centage of false positive is also observed. Thus, adopting UDT-Seq and increasing the depth of sequencing may 
not always help somatic SNV calling: it provides researchers with much higher resolution at the price of shrunken 
sequencing regions, larger proportion of false-positives, and increasing difficulties in selection/ filtration of calls. 
Necessary optimization of the pipelines and parameters are required to control false-positive calls in UDT-Seq. 
Furthermore, some callers may vary their performance under different depths: MuTect2 and Strelka did more 
impressive jobs on UDT-Seq data than WES data, whereas Varscan had poorer function on UDT-Seq data than 
WES data. Consequently, a profound understanding and a clear goal in study design are crucial for the successful 
detection of the desired mutations. In cancer genome, there is a particular significance for high-quality detection 
of low frequency mutations, since researchers often desire to capture minor mutations out of the vast heteroge-
neity of cancer. Moreover, in cancer research practice, most tumor contents are of substantial impurity, inevitably 
diluting the mutations of interest. Thus, we would increase depths in tumor benefit discovery of low-fraction SNV 
while the total cost remains acceptable.

In conclusion, there is a substantial discordance among samples, methods, and depths of reads in somatic 
SNV calling. Through our analysis, multiple facts indicate that MuTect2 and Strelka are of superior performance, 
and combining the results of different callers helps increasing the reliability of candidates but sacrifices enormous 
amount of uniquely detected calls. Compared to WES, calling in UDT-Seq obtained remarkably more real vari-
ation for given regions, although false-positive predictions even outgrow real ones as read depths increase. Our 
analysis provides a detailed and visualized reference for somatic SNV identification in WES and UDT-Seq, as well 
as orientations for further technological progress.

Methods
Sequencing reads of patients were obtained from our previous study24. A total of 57 Chinese patients with only 
gallbladder carcinoma were recruited for the NGS, 29 of which were for both WES and UDT-Seq. 3 patients were 
processed with only WES and 25 were with only UDT-Seq. Whole-exome enrichment was performed using the 
TruSeq Exome Enrichment kit (Illumina). Captured DNA libraries were sequenced with the Illumina HiSeq 
2500 Genome Analyzer, yielding 200 (2 ×  100) base pairs from the final library fragments. UDT-Seq included 
283 genes in the target enrichment panel. Targeted gene enrichment was performed with the TruSeq Custom 
Enrichment kits (Illumina). The validation data using Sanger sequencing was also acquired from this study24.

All sequencing reads were trimmed and filtered using Trimmomatic36. Following is the alignment of resulting 
reads to hg19 reference genome with Burrows-Wheeler Aligner (BWA, http://bio-bwa.Sourceforge.net/). Then we 
used the Genome Analysis Toolkit (GATK)37 for base quality score recalibration, indel realignment, and duplicate 
removal, reads with quality below 20 were discarded. We did not remove duplicate reads during UDT-Seq data 
analysis since normal reads may be eliminated for the application under high read depths.

http://bio-bwa.Sourceforge.net/


www.nature.com/scientificreports/

8Scientific RepoRts | 6:36540 | DOI: 10.1038/srep36540

Four popular somatic SNV caller, i.e. Varscan, SomaticSniper, Strelka and MuTect2 (Supplementary Table S3)  
were run on above pre-processed sequencing data and with default parameters recommended by the developers.  
We set the somatic quality threshold of SomaticSniper to 30 (the author recommended 15–40). Raw call sets gen-
erated by Varscan and SomaticSniper were filtered by pipelines proposed by the developers, and those generated 
by Strelka and MuTect2 were processed with built-in post-calling filters for either tool. Calls from the sample 
XHDG04, XHDG05 and XHDG06 pairs were removed for the posterior analysis from the total UDT-Seq call sets 
since their outliers contain excessive calls than other samples (more than 10 fold) and may have undue weight 
effects.

To identify false SNV predictions, first, we marked out variants with alternate alleles called in their corre-
sponding normal samples through following standards: having too many alternate allele reads (> 5 for WES, 
and > 15 for UDT-Seq) in normal tissue; alternate allele reads constituting more than 10% of the total reads in 
normal tissue; and alternate allele reads in normal tissue exceeding 20% of that in corresponding tumor tissue. 
These sites, which are referred to as “high-alternate-alleles-in-control (HAAIC) variants”, are excessively unreli-
able and are therefore considered as likely false-positives. Second, Strand bias, which was common in Illumina 
sequencing data17 and provides a very probable source of false-positives, was examined by Fisher’s exact test. 
Variants with Phred-scaled p-value above 30 were regarded as strand biased. Third, since a true somatic SNV of 
one patient could rarely be a germline polymorphism in other subjects, we used Unified Genotyper of GATK to 
genotype all somatic SNV candidate sites in normal samples and calculated the total count of variant alleles of 
each somatic SNV candidate site in all controls. Each somatic SNV candidate occurring in normal samples of 
other patients more than two observations was marked as false positives. To visualize the distribution of SNV 
candidates, depth-VAF scatter plot was drawn using R software version 3.1.2 (www.r-project.org/), in which the 
Y-axis means the read depth of a SNV candidate in the tumor tissue, while the X-axis means the fraction of reads 
carrying the variant alleles, i.e. variant allele fraction(VAF) of each SNF candidate. The read depth of a SNV can-
didate is calculated based on normalized depth according to the following equation:

=
−
−

×Depth d dmin
dmax dmin

100 (1)

where d means the measured tumor read depth of a SNV, dmin means the minimum tumor read depth in a SNV 
candidate set, dmax means the maximum tumor read depth in a SNV candidate set.

Furthermore, SNV candidate sets were compared with dbSNP Human Build 138 and COSMIC v70, and calls 
were annotated for their appearance in these two databases. Since these two databases overlap which means that 
a small percentage of SNVs in dbSNP are somatic, candidates that are annotated by both COSMIC and dbSNP 
are only considered “COSMIC” but “non-dbSNP”. A total of 120 somatic SNVs by NGS were verified by Sanger 
sequencing. Excluding the loci that failed in PCR, 108 of 120 SNVs (90%) were successfully validated.

Cake was used for combining calls from multiple somatic mutation-callers. Four callers (SomaticSniper, 
Varscan, MuTect2 and Strelka)38 were applied by the program on pre-processed sequencing data(.bam files), and 
the post-processing module of Cake automatically sorted out somatic SNVs called by two or more methods, pass-
ing them to a further series of filtrations. Read depths and qualities were also extracted from the final outputs. We 
examined the outputs in dbSNP and COSMIC entries, strand bias and observation in controls.

To evaluate the effects of different sequencing depths on somatic SNV detection, we filtered candidate sets of 
WES data to keep only SNV candidates located within gene regions covered by UDT-Seq. Then, these subsets of 
SNV candidates underwent a comparison to those obtained from UDT-Seq.

Significant progresses have been achieved recently in developing various genome analysis tools39–43, which 
have been successfully used to analyze various important problems in genome analysis. It has not escaped our 
notice that these powerful new computational tools are very useful for in-depth studies in this area and our efforts 
are being underway.

References
1. Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).
2. Cancer Genome Atlas, N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 

(2012).
3. Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
4. Stratton, M. R. et al. The cancer genome. Nature 458, 719–724 (2009).
5. Ding, L. et al. Expanding the computational toolbox for mining cancer genomes. Nature reviews. Genetics 15, 556–570 (2014).
6. Vandin, F. et al. De novo discovery of mutated driver pathways in cancer. Genome research 22, 375–385 (2012).
7. Youn, A. & Simon, R. Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics 27, 175–181 (2011).
8. Chun, S. & Fay, J. C. Identification of deleterious mutations within three human genomes. Genome research 19, 1553–1561 (2009).
9. Cai, L. et al. Meta-Analysis-Based Preliminary Exploration of the Connection between ATDILI and Schizophrenia by GSTM1/T1 

Gene Polymorphisms. PLoS One 10, e0128643 (2015).
10. Cai, L. et al. Prostate cancer with variants in CYP17 and UGT2B17 genes: a meta-analysis. Protein and peptide letters 19, 62–69 

(2012).
11. Boutros, P. C. et al. Global optimization of somatic variant identification in cancer genomes with a global community challenge. 

Nature genetics 46, 318–319 (2014).
12. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome 

research 22, 568–576 (2012).
13. Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 

1811–1817 (2012).
14. Larson, D. E. et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 28, 

311–317 (2012).
15. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature biotechnology 

31, 213–219 (2013).

http://www.r-project.org/


www.nature.com/scientificreports/

9Scientific RepoRts | 6:36540 | DOI: 10.1038/srep36540

16. Shiraishi, et al. An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic 
acids research 41, e89 (2013).

17. Wang, Q. et al. Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers. Genome 
medicine 5, 91 (2013).

18. Goode, D. L. et al. A simple consensus approach improves somatic mutation prediction accuracy. Genome medicine 5, 90 (2013).
19. Roberts, N. D. et al. A comparative analysis of algorithms for somatic SNV detection in cancer. Bioinformatics 29, 2223–2230 (2013).
20. Xia, J. et al. NGS catalog: A database of next generation sequencing studies in humans. Human mutation 33, E2341–E2355 (2012).
21. Kim, S. Y. & Speed, T. P. Comparing somatic mutation-callers: beyond Venn diagrams. BMC bioinformatics 14, 189 (2013).
22. Xu, H. et al. Comparison of somatic mutation calling methods in amplicon and whole exome sequence data. BMC genomics 15, 244 

(2014).
23. Tsiatis, A. C. et al. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS 

mutations: diagnostic and clinical implications. The Journal of molecular diagnostics: JMD 12, 425–432 (2010).
24. Li, M. et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB 

pathway. Nature genetics 46, 872–876 (2014).
25. Talwalkar, A. et al. SMaSH: a benchmarking toolkit for human genome variant calling. Bioinformatics 30, 2787–2795 (2014).
26. Li, H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 30, 2843–2851 (2014).
27. Rashid, M. et al. Cake: a bioinformatics pipeline for the integrated analysis of somatic variants in cancer genomes. Bioinformatics 29, 

2208–2210 (2013).
28. Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic acids research 29, 308–311 (2001).
29. Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic acids research 43, 

D805–D811 (2015).
30. Roth, A. et al. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-

generation sequencing data. Bioinformatics 28, 907–913 (2012).
31. Wang, W. et al. FaSD-somatic: a fast and accurate somatic SNV detection algorithm for cancer genome sequencing data. 

Bioinformatics 30, 2498–2500 (2014).
32. Cantarel, B. L. et al. BAYSIC: a Bayesian method for combining sets of genome variants with improved specificity and sensitivity. 

BMC bioinformatics 15, 104 (2014).
33. Kim, S. Y. et al. Combining calls from multiple somatic mutation-callers. BMC bioinformatics 15, 154 (2014).
34. Schadt, E. E. et al. Computational solutions to large-scale data management and analysis. Nature reviews. Genetics 11, 647–657 

(2010).
35. Kassahn, K. S. et al. Somatic point mutation calling in low cellularity tumors. PLoS One 8, e74380 (2013).
36. Bolger, A. M. et al. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
37. McKenna et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. 

Genome research 20, 1297–1303 (2010).
38. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
39. Chen, W. et al. PseKNC: a flexible web-server for generating pseudo K-tuple nucleotide composition. Anal. Biochem. 456, 53–60 

(2014).
40. Chen, W. et al. PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions. 

Bioinformatics 31, 119–120 (2015).
41. Liu, B. et al. repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-

defined physicochemical properties and sequence-order effects. Bioinformatics 31, 1307–1309 (2015).
42. Liu, B. et al. repRNA: a web server for generating various feature vectors of RNA sequences. Molecular Genetics and Genomics 291, 

473–481 (2016).
43. Liu, B. et al. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences 

Nucleic Acids Res. 43, W65–W71 (2015).

Acknowledgements
The authors wish to thank the anonymous reviewers for their constructive comments, which were very helpful for 
strengthening the presentation of this study. This work was supported by grants from the National Key Technology 
R&D Program (2012BAI01B09), the National Nature Science Foundation of China (81421061, 81361120389), 
and Shanghai Jiao Tong University Medical Engineering Cross Research Foundation (YG2014MS07).

Author Contributions
L.C., W.Y., Z.Z. and K.C.C. conceived the study; L.C., W.Y., Z.Z. and L.H. designed the experiments; W.Y. and 
Z.Z. provided the data; W.Y., L.C. and Z.Z. performed the research, and drafted the preliminary manuscript; 
L.C., W.Y., Z.Z. and K.C.C. analyzed the result, and prepared Figures 1–4 and all tables. L.C. and W.Y. prepared 
Supplementary Figures 1–3; L.C. and K.C.C. finalized the paper. All authors reviewed the final manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Cai, L. et al. In-depth comparison of somatic point mutation callers based on different 
tumor next-generation sequencing depth data. Sci. Rep. 6, 36540; doi: 10.1038/srep36540 (2016).
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data
	Results
	Calling of four somatic SNV callers. 
	Evaluation of somatic SNV callers by multiple metrics of candidate sets. 
	Cake analysis. 
	Comparison between WES and UDT-Seq. 

	Discussions
	Methods
	Acknowledgements
	Author Contributions
	Table 1.   Multiple features used for gauging call sets produced by four sSNV callers.
	Table 2.   Sanger sequencing validation for SNV candidates.
	Table 3.   Comparison between candidates identified by the four callers and those by Cake.
	Table 4.   SNV Candidates detected by four callers based on WES and UDT-Seq data in 23 samples.
	Figure 1.  Counts of mutations detected by four sSNV callers in different patients based on WES (A) and UDT-Seq (B) data.
	Figure 2.  The relationship of mutations detected by four sSNV callers.
	Figure 3.  The depth-VAF scatter plot of SNV candidates in WES (A) and UDT-Seq (B).
	Figure 4.  The intersection of SNVs obtained from WES and UDT-Seq data.



 
    
       
          application/pdf
          
             
                In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data
            
         
          
             
                srep ,  (2016). doi:10.1038/srep36540
            
         
          
             
                Lei Cai
                Wei Yuan
                Zhou Zhang
                Lin He
                Kuo-Chen Chou
            
         
          doi:10.1038/srep36540
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep36540
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep36540
            
         
      
       
          
          
          
             
                doi:10.1038/srep36540
            
         
          
             
                srep ,  (2016). doi:10.1038/srep36540
            
         
          
          
      
       
       
          True
      
   




