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ABSTRACT

Just like PTM or PTLM (post-translational modification) in proteins, PTCM (post-transcriptional modifi-
cation) in RNA plays very important roles in biological processes. Occurring at adenine (A) with the
genetic code motif (GAC), Ne—methyldenosine (mPA) is one of the most common and abundant PTCMs in
RNA found in viruses and most eukaryotes. Given an uncharacterized RNA sequence containing many
GAC motifs, which of them can be methylated, and which cannot? It is important for both basic research
and drug development to address this problem. Particularly with the avalanche of RNA sequences
generated in the postgenomic age, it is highly demanded to develop computational methods for timely
identifying the N®-methyldenosine sites in RNA. Here we propose a new predictor called pRNAmM-PC, in
which RNA sequence samples are expressed by a novel mode of pseudo dinucleotide composition
(PseDNC) whose components were derived from a physical-chemical matrix via a series of auto-
covariance and cross covariance transformations. It was observed via a rigorous jackknife test that, in
comparison with the existing predictor for the same purpose, pRNAmM-PC achieved remarkably higher
success rates in both overall accuracy and stability, indicating that the new predictor will become a useful
high-throughput tool for identifying methylation sites in RNA, and that the novel approach can also be
used to study many other RNA-related problems and conduct genome analysis. A user-friendly Web
server for pRNAm-PC has been established at http://www.jci-bioinfo.cn/pRNAmM-PC, by which users can

easily get their desired results without needing to go through the mathematical details.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Post-transcriptional modifications (PTCM) of RNA play a crucial
role in understanding various RNA metabolisms, such as messenger
RNA (mRNA) stability, splicing export, immune tolerance, and
transcription [1—4]. So far, more than 100 distinct PTCMs have been
identified in mRNA, transfer RNA (tRNA) and ribosomal RNA (rRNA)
[5,6]. Among these modification, N®-methyldenosine (m®A) is the
one of the most important PTCMs, which is catalyzed by a meth-
yltransferase complex containing at least one subunit of METTL3
(methyltransferase like 3), and the process is reversible under the
catalysis of demethylases FTO and ALKBH5, as shown in Fig. 1.

* Corresponding author. Computer Department, Jing-De-Zhen Ceramic Institute,
Jing-De-Zhen 333403, China.
E-mail address: xxiao@gordonlifescience.org (X. Xiao).
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RNA N®-methyldenosine has various biological functions. It is
important for cell fate determination in yeast [7,8], and it is also
significant for embryo development in plants [9]. Accordingly,
knowledge of mRNA mPaA sites is vitally important for both basic
research and drug development.

Narayan et al. [10] investigated the distribution of m®A in
mRNA by means of the experimental techniques such as TLC (thin
layer chromatography) and HPLC (high performance liquid chro-
matography). Recently, it was observed using various experi-
mental high-throughput experimental tools such as CHIP-Seq
[11,12] and MeRIP-Seq [13,14] that the m6A sites are not
randomly distributed, but are near the stop codons and within the
coding sequences [11]. Recently, Harcour et al. [15] used the se-
lective polymerase approach to detect N(6)-methyladenosine in
RNA.
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Fig.1. An illustration of reversible N6-methylation and demethylation in mRNA. The formation of m°A is catalyzed by methyltransferase METTL3, and its reversible modification

(demethylation) is catalyzed by demethylases FTO and ALKBH5.

The studies by these authors are significant in stimulating the
development of this area. But it is both time-consuming and
expensive to determine m®A sites in RNA using purely experimental
techniques. Particularly, with the avalanche of RNA sequences
occurring in the postgenomic age, it is highly demanded to develop
computational tools for rapidly determining the methylation sites
in RNA. Actually, in a pioneer work, Chen et al. [16] developed a
computational method to predict m®A sites in RNA via pseudo
nucleotide composition [17,18] or PseKNC [19,20], a strategy for
extending pseudo amino acid composition or PseAAC [21] in
dealing with protein/peptide sequences to treat DNA/RNA se-
quences. For users' convenience, their method also has a Web-
server called “iRNA-Methyl,” which is the first computational tool
ever established for predicting the m®A sites in RNA. According to
their report, however, its overall success rate is 65.59%, implying
that further efforts are needed to enhance its accuracy.

The present study was devoted to this problem. According to
Chou's five-step rule [22] and fulfilled in a series of recent publi-
cations [23—30], to establish a really useful sequence-based sta-
tistical predictor for a biological system, we need to consider the
following five procedures: (1) construct or select a valid benchmark
dataset to train and test the predictor; (2) formulate the biological
sequence samples with an effective mathematical expression that
can effectively correlate with the target to be predicted; (3) intro-
duce or develop a powerful algorithm (or operation engine) to
calculate the prediction; (4) properly carry out cross validation tests
to objectively evaluate the anticipated accuracy; (5) establish a
user-friendly Web server accessible to the public. Below, we
describe how to fulfill these steps one by one.

Materials and methods
Benchmark dataset

In literature the benchmark dataset usually consists of a training
dataset and a testing dataset: the former is used for training a
model, while the latter used for testing the model. But as pointed
out in a comprehensive review [31], there is no need to artificially
separate a benchmark dataset into the two parts if the prediction
model is examined by the jackknife test or subsampling (K-fold)
cross validation, because the outcome thus obtained is actually
from a combination of many different independent dataset tests.
Thus, the benchmark dataset set S for the current study can be
formulated as

s =stus", 1)

where the positive subset S* contains only the samples of
methylation RNA segments; the negative subset S~ contains
only the samples of nonmethylation RNA segment; and u rep-
resents the symbol for “union” in set theory. The detailed
samples were downloaded from the iRNA-Methyl Web server
[16]. Such a high-quality benchmark dataset for studying N°-
methyldenosine sites in RNA can also be obtained from Ref.
[32]. As shown in Supporting Information S1, the benchmark
dataset consists of 1307 positive samples and 1307 negative
samples, each being of a 51-tuple nucleotide. The reason
each of such samples contains a 51-tuple nucleotide is that
they were collected by sliding a flexible window [33] along
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each of the RNA sequences taken from the Saccharomyces cer-
evisiae genome. The window's width is (2€ + 3); when £ = 24 or
(2% 3) = 51, best prediction results were achieved, as elaborated
in Ref. [32].

From RNA sequential model to discrete model

An RNA sample in S of Eq. (1) or Supporting Information S1 can
generally be expressed as

R =N;N;N3--N;---N5q, (2)

where Nj represents the first nucleotide of the RNA sample at its
sequence position 1, N, the second nucleotide at its position 2, and
so forth. They can be any of the four nucleotides; i.e.,

N;e{A (adenine) C (cytosine) G (guanine) U (uracil) },

(3)

wherei=1,2, -+, 51 and the symbol € means “a member of ” in set
theory.

Based on the sequential model of Eq. (2), one could directly
utilize BLAST [34] to perform statistical analysis. Unfortunately, this
kind of straightforward and intuitive approach failed to work when
a query RNA sample did not have significant similarity to any of the
character-known RNA sequences.

To overcome this problem, investigators have shifted their focus
to the discrete or vector model. The advantage of doing so is also
due to the fact that nearly all the existing machine-learning algo-
rithms can be used directly to handle vector models but not se-
quences, as elaborated in Ref. [35].

The simplest vector model for an RNA sequence is its nucleic
acid composition (NAC); i.e.,

R = [f(A) f(O) f(G) fUIT, (4)

where f(A), f{(C), f{G), and f{U) are the normalized occurrence fre-
quencies of adenine (A), cytosine (C), guanine (G), and uracil (U) in
the RNA sequence, respectively; the symbol T is the transpose
operator. As we can see from Eq. (4), however, if NAC were used to
represent a RNA sample, all its sequence order information would
be completely lost.

If the RNA sequence sample is represented by the k-tuple
nucleotide (or k-mers) composition [17], the corresponding feature
vector will contain 4¥ components, as given by

T

R=1[fi L 5 - f fa 17, (5)
where f; represents the normalized occurrence frequency of the
ith k-mer. As we can see from Eq. (5), when k > 4 the number of
the vector components will rapidly increase, causing the so-
called “high-dimension disaster” [36] or overfitting problem,
which will significantly reduce the deviation tolerance or cluster-
tolerant capacity [37], lowering the prediction success rate or
stability. Therefore, the k-mers approach is useful only when the
value of k is very small. In other words, it can only be used to
incorporate the local or short-range sequence-order information,
but certainly not the global or long-range sequence-order infor-
mation. To approximately cover the long-range sequence-order
effects, one popular and well-known method is to use the pseudo
components that were originally introduced in dealing with
protein/peptide sequences [21,38] and recently extended to deal
with DNA/RNA sequences [17—20,23,39—-42].

According to the concept of pseudo components Ref. [22], the
RNA sequence can be generally formulated.

R=[W; Wy Wy, - Wo|T, (6)

where the subscript Q is an integer and its value, as well as the
components ¥, (u=1,2, ---, Q), will depend on how the desired
information is extracted from the RNA sequence of Eq. (2).

Below, we use the “physical-chemical property matrix” and
“auto-covariance and cross covariance transformations” to define
the Q elements in Eq. (6).

Physical—chemical property matrix

There are 4 x 4 = 16 different dinucleotides or dimers in an RNA
sequence, i.e., AA, AC, AG, AU, CA, CC, CG, CU, GA, GC, GG, GU, UA,
UC, UG, and UU (cf. Eq. (3)). Each of the sixteen dimers has a
different set of physical-chemical (PC) properties. Thus, an RNA
sample can be encoded by a series of PC values. In the current study,
the following 10 PC properties were considered: (1) PC': rise [43];
(2) PC%: roll [43]; (3) PC3: shift [43]; (4) PC*: slide [43]; (5) PC°: tilt
[43]; (6) PC®: twist [43]; (7) PC”: enthalpy [44]; (8) PC8: entropy
[45]; (9) PC?: stack energy [43]; (10) PC'0: free energy [45]. Listed in
Table 1 are their original values, based on which the RNA sample in
Eq. (2) can be converted to a 10 x (51-1) = 10 x 50 phys-
ical—chemical property matrix,

PC'(N;Np)  PC'(N;Nj3) PC! (N5oNs)
pc— | PC(NINy)  PC2(NaN3) PC?(NsoNs1)
PC'O(N;N,)  PC'O(N,Ns) PC'®(NsoNs1 )

(7)

where PC(N;Nji,1) is the jth (j = 1, 2, ---, 10) PC value for the NiN;,
dinucleotide in Eq. (2).

Before the data of Table 1 were substituted into Eq. (7), however,
they were subject to a standard conversion through the following
equation [31],

Ym = [Xm — mean(x)]/std(x), (8)

where xp, stands for the original PC value in Table 1 for the mth
(m=1,2,---,10) dinucleotide, mean(x) for the average score for the
16 dinucleotides, and std(x) for the corresponding standard devi-
ation. Listed in Table 2 are the corresponding converted values of
¥m,» Which will have a zero mean value over the 16 dinucleotides or
dimers, and will remain unchanged if they go through the same
conversion procedure again.

Auto-covariance and cross covariance

In statistics, the auto-covariance is the covariance of a sto-
chastic process against a parameter-shift version of itself, while
the cross covariance is used to refer to the covariance between
two random vectors. In this study, we use the two concepts of
covariance to transform the matrix of Eq. (7) to a length-fixed
feature vector.

According to the concept of auto-covariance (AC), the correla-
tion of the same PC property between two subsequences separated
by A dinucleotides or dimers can be expressed as

>0 [PC™ (NjNj 1) —PTT"} {PC'" (Nj13Njjq5) —PC™

AC(m,\) = T

(m=1,2,--,10),
(9)
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Table 1

Original values of the 10 physico-chemical properties for each of the 16 dinucleotides.
Code Dimer pC! pC? pc3 pct PC® pCt pC’ pC® pC® pC'?
1 AA 3.18 7.0 —0.08 -1.27 -0.8 31 —6.82 -184 -13.7 -0.9
2 AC 3.24 4.8 0.23 —-1.43 0.8 32 -11.40 —26.2 -13.8 -2.1
3 AG 33 8.5 —0.04 -1.50 0.5 30 -10.48 -19.2 -14 -1.7
4 AU 3.24 7.1 —0.06 -1.36 11 33 -9.38 —15.5 -154 -0.9
5 CA 3.09 9.9 0.11 —1.46 1.0 31 -10.44 —27.8 -144 -1.8
6 CcC 3.32 8.7 -0.01 -1.78 0.3 32 -13.39 —29.7 -11.1 -29
7 CG 33 12.1 03 -1.89 -0.1 27 —10.64 —-19.4 -15.6 -2
8 cu 33 8.5 —0.04 -1.50 0.5 30 -10.48 -19.2 -14.0 -1.7
9 GA 3.38 9.4 0.07 -1.70 13 32 -12.44 —-35.5 —-14.2 -23
10 GC 3.22 6.1 0.07 -1.39 0.0 35 —14.88 —-34.9 -16.9 -34
11 GG 3.32 121 —0.01 -1.78 0.3 32 -13.39 —29.7 -11.1 -2.9
12 GU 3.24 4.8 0.23 —-1.43 0.8 32 -11.40 —26.2 -13.8 -21
13 UA 3.26 10.7 —0.02 —-1.45 -0.2 32 —7.69 —-22.6 -16.0 -1.1
14 uc 3.38 9.4 0.07 -1.70 13 32 -12.44 —26.2 —-14.2 -2.1
15 UG 3.09 9.9 0.11 —1.46 1.0 31 -10.44 -19.2 -144 -1.7
16 uu 3.18 7.0 —0.08 -1.27 -0.8 31 —6.82 -184 -13.7 -0.9

Table 2

The converted data obtained from Table 1 via Eq. (8).
Code Dimer pC! PC? pC pct PC® PCt PC’ pct pC? pC'®
1 AA -0.83 —0.67 -1.13 1.34 —-1.84 —0.26 1.72 0.95 0.29 1.35
2 AC -0.14 —1.64 1.50 0.49 0.54 0.34 -0.27 -0.31 0.23 —0.26
3 AG 0.55 0.00 -0.79 0.12 0.09 —-0.86 0.13 0.82 0.10 0.28
4 AU -0.14 —0.62 —0.96 0.87 0.98 0.93 0.61 1.42 -0.83 1.35
5 CA -1.87 0.62 0.48 0.33 0.83 —0.26 0.15 -0.57 -0.17 0.14
6 cC 0.78 0.09 -0.53 -1.36 —0.20 0.34 -1.13 -0.88 2.02 -1.34
7 CG 0.55 1.60 2.09 -1.95 -0.80 —2.65 0.06 0.79 -0.97 -0.13
8 CuU 0.55 0.00 -0.79 0.12 0.09 —0.86 0.13 0.82 0.10 0.28
9 GA 1.47 0.40 0.14 -0.94 1.28 0.34 -0.72 -1.82 —0.04 —0.53
10 GC -0.37 -1.07 0.14 0.71 —0.65 213 -1.77 —-1.72 -1.83 -2.01
11 GG 0.78 1.60 —0.53 -1.36 —-0.20 0.34 -1.13 —0.88 2.02 -1.34
12 GU -0.14 —1.64 1.50 0.49 0.54 0.34 -0.27 -0.31 0.23 —0.26
13 UA 0.09 0.98 —0.62 0.39 —0.95 0.34 1.34 0.27 -1.23 1.08
14 uc 1.47 0.40 0.14 —-0.94 1.28 0.34 —-0.72 -0.31 —0.04 —0.26
15 uG -1.87 0.62 0.48 0.33 0.83 —0.26 0.15 0.82 -0.17 0.28
16 uu —-0.83 —0.67 -1.13 1.34 -1.84 —0.26 1.72 0.95 0.29 135

where L is an integer within the range from 0 to 49, and PC™ is the
mean of the data along the mth row in the matrix of Eq. (7), as given

by

> 7% PC™ (NjNj 1)
50 ’
As we can see from Eq. (9), by means of the auto-covariance
approach, we can generate 10 x A components associated with
the physical-chemical properties of an RNA sample in Eq. (2).
On the other hand, according to the concept of cross covariance
(CCQ), the correlation between two subsequences each belonging to
a different PC property can be formulated by

PC™ =

(10)

=1
CCq, iz, ) = =2

S0 [Pc“l (N;Nj1) — PC“*] [PC“2 (N;2Nj 142) — PC™

tests indicated, however, that the outcomes were most promising
when A = 4. Therefore, the RNA sample is hereafter formulated by

R=[W; Wy Wy - Wygo!T, (12)

where ¥, is the uth of the 400 components generated by Egs.
(9)—(10) as described above.

Support vector machine

SVM is a machine-learning algorithm based on statistical
learning theory. It has been widely used in the realm of bioinfor-
matics (see, e.g., [16,23—28,30,41,42,46—53]). The basic idea of SVM

:| (ul = 17 27 ] 101 H2 = 17 27 ) 107 n # “2)7 (11)

50 — &

indicating that the cross-covariance approach can generate
10 x 9 x A components associated with the sample of Eq. (2).
With Egs. (9) and (11), a total of (10 x A4+ 10 x 9 x A) = 100 x A
components were generated by auto-covariance and cross covari-
ance via 10 different physical-chemical properties. Preliminary

is to construct a separating hyperplane to maximize the margin
between the positive dataset and negative dataset. The nearest two
points to the hyperplane are called the support vectors. SVM first
constructs a hyperplane based on the training dataset, and then
maps an input vector from the input space into a vector in a higher-
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dimensional Hilbert space, where the mapping is determined by a
kernel function. A trained SVM can output a class label (in our case,
methylation or nonmethylation) based on the mapping vector of
the input vector.

For a brief formulation of SVM and how it works, see the papers
[54,55]; for more details about SVM, see the monograph [56].

In the current study, the RNA samples as formulated by Eq. (12)
were used as inputs for the SVM classifier. Given a query RNA
sample, the classifier can quite accurately predict which class it
belongs to after training by a relevant dataset, i.e., clearly indicating
whether it is a “methylation RNA segment” or “nonmethylation
RNA segment.” Also, the LIBSVM algorithm [57] was employed,
which is software for SVM classification and regression. The kernel
function was set as the radial basis function (RBF) and its two pa-
rameters were optimized with the benchmark dataset S via a two-
dimensional grid search (Fig. 2) performed by LIBSVM [57]. The
optimized parameters thus obtained in the current study were
C =16 and y = 0.0039.

The predictor obtained via the aforementioned procedures is
called pRNAm-PC, where “p” stands for “predict,” “RNAm” for
“RNA methylation site,” and “PC” for “physical-chemical
properties.”

Results and discussion

As mentioned in the Introduction, one of the important pro-
cedures in developing a new predictor is properly and objectively
evaluating its quality [22], which actually consists of the following
two aspects: what metrics should be used to quantitatively mea-
sure the prediction accuracy, and what kind of test method should
be utilized to derive the metrics' values. Below, we address these
problems.

A set of more intuitive metrics to define the prediction quality

To facilitate quantitative analysis, in this study we used
a set of more intuitive and easier-to-understand metrics
formulated in terms of the symbols introduced by Chou [58] in
studying signal peptide prediction. According to Chou's formu-
lation, the sensitivity Sn, specificity Sp, overall accuracy Acc, and
Matthews correlation coefficient MCC can be expressed [59,60].

100

©
o

»
o

Accuracy(%)

N
o

Fig.2. Three-dimensional plot to show how to find the optimal values of C and y via a
two-dimensional grid search.

N*
Sn = N 0 <Sn<1
N7
=1--—" < <
Sp=1-7F 0<Sp<1
I
Acc= A=1-FNe g acc<1

Nt +N~
1 (NE+Ny
Nt +N-

NI —N* Nt —N;
J(”w) (”N

where N' is the total number of the positive samples or true
methylation RNA segments investigated while N is the number of
true methylation RNA samples incorrectly predicted to be of false
methylation segment; N~ the total number of the negative samples
or nonmethylation RNA samples investigated while N7 is the
number of the nonmethylation RNA samples incorrectly predicted
to be of methylation segment.

According to Eq. (13), the following is crystal clear. When
Nt = 0, meaning none of the positive sample was incorrectly pre-
dicted to be a negative one, we have the sensitivity Sn = 1. When
N* = NT, meaning that all the positive samples were incorrectly
predicted to be the negative, we have the sensitivity Sn = 0. Like-
wise, when N, = 0, meaning none of the negative samples was
mispredicted, we have the specificity Sp = 1; whereas Ny =N,
meaning that all the negative samples were incorrectly predicted as
positive, we have the specificity Sp = 0. When N* =N, =0,
meaning that none of the samples in the positive dataset and none
of the samples in the negative dataset were incorrectly predicted,
we have the overall accuracy Acc = 1 and MCC = 1; when N* = N*
and N7 = N-, meaning that all the samples in the positive dataset
and all the samples in the negative dataset were incorrectly pre-
dicted, we have the overall accuracy Acc = 0 and MCC = —1;
whereas when N* = N*/2 and N7 = N~ /2 we have Acc = 0.5 and
MCC = 0, meaning no better than a random guess.

As we can see from the above discussion, using the
metrics formulated in Eq. (13) rather than the conventional
formulation would make the meanings of sensitivity, specificity,
overall accuracy, and Mathew's correlation coefficient much
more intuitive and clearer, particularly for the meaning of
MCC, as concurred by a series of recent publications
[16,23—25,27—29,41,42,49—53,61—-65].

But note that the set of metrics in Eq. (13) is valid only for the
single-label systems. For the multilabel systems, whose emergence
has become more frequent in system biology [66—69] and system
medicine [70], a completely different set of metrics is needed as
elaborated in Ref. [71].

MCC = ~1<MCC<1,

(13)

Cross validation

In statistical prediction, the following three cross validation
methods are often used to calculate the values of the four metrics in
Eq. (13) for a predictor: independent dataset test, subsampling (or
K-fold cross validation) test, and jackknife test [72]. Of the three
methods, the jackknife test is deemed the least arbitrary, which can
always yield a unique outcome for a given benchmark dataset as
elucidated in Ref. [22] and demonstrated by Eqs. (28)—(32) therein.
Therefore, the jackknife test has been widely recognized and
increasingly used by investigators to examine the quality of various
predictors (see, e.g., [73—77]).
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Accordingly, in this study we also use the jackknife test to
evaluate the accuracy of the current predictor. During the jackknife
test, each of the samples in the benchmark dataset is in turn singled
out as an independent test sample and all the rule parameters are
calculated without including the sample being identified. Although
the jackknife test may take more computational time, it is worth-
while because it will always yield a unique outcome for a given
benchmark dataset.

Comparison with the existing predictor

The success rates achieved by the pRNAm-PC predictor via the
jackknife test on the benchmark dataset of Eq. (1) (cf. the
Supporting Information S1) are given in Table 3. To facilitate com-
parison, listed there are also the corresponding rates achieved by
iRNA-Methyl [16], the only peer counterpart in the area of pre-
dicting the methylation sites in RNA. As we can see from Table 3,
the new predictor pRNAmM-PC proposed in this paper remarkably
outperformed its counterpart, particularly in Acc and MCC; the
former stands for the overall accuracy, and the latter for the
stability.

Graphs are a useful vehicle for studying complicated biological
systems because they can provide intuitive insights, as demon-
strated by a series of previous studies (see, e.g., [78—84]). To
provide an intuitive comparison, the graph of receiver operating
characteristic (ROC) [85,86] was adopted to show the improve-
ment of pRNAm-PC over iRNA-Methyl. The blue graphic line (in
the web version) in Fig. 3 is the ROC curve for the iRNA-Methyl
predictor, while the red graphic line is that for the proposed
predictor pRNAmM-PC. The area under the ROC curve is called the
AUC (area under the curve). The greater the AUC value is, the
better the predictor will be [85,86]. As we can see from Fig. 3, the
area under the red curve is remarkably greater than that under the
blue one, indicating that the proposed predictor is indeed better
than iRNA-Methyl [16], the only existing bioinformatics tool for
identifying the methylation sites in RNA. Therefore, we anticipate
that pRNAmM-PC may become a useful tool in this important area,
or at the very least, play a complementary role to the existing
method.

Web server and its user guide

To enhance the value of its practical applications, a Web server
for pPRNAm-PC has been established. Furthermore, to maximize the
convenience of most experimental scientists, a step-by-step guide
is provided, by which users can easily get their desired results
without the need to go through the detailed mathematical equa-
tions involved in this paper.

Step 1. Opening the Web server at http://www:.jci-bioinfo.cn/
PRNAmM-PC, you will see the top page of pRNAmM-PC on your
computer screen, as shown in Fig. 4. Click on the Read Me button
to see a brief introduction to the predictor.

Table 3
A comparison® of the pRNAmM-PC predictor with the other existing method for
predicting methylation sites in RNA.

Predictor ACC (%) MCC (%) Sn (%) Sp (%) ROC (%)
iRNA-Methyl” 65.59 0.29 70.55 60.63 70.48
pRNAmM-PC* 69.74 0.40 69.72 69.75 76.28

2 The results listed below were obtained by the jackknife test on a same bench-
mark dataset (cf. Eq. (1)).

b See Ref. [16].

¢ Proposed in this paper.

ROC curves

0.8
0.6 //— pRNAm-PC _—

= —— iRNA-Methyl
AN
0.4
0.2
00 0.5 1
1-Sp

Fig.3. The ROC curves to show the predictor's quality.

Step 2. Either type or copy/paste the query RNA sequences
into the input box at the center of Fig. 4. The input sequence
should be in the FASTA format. For examples of sequences in
FASTA format, click the Example button right above the input
box.

Step 3. Click on the Submit button to see the predicted result. For
example, if you use the query RNA sequences in the Example
window as the input, in about 20 s after submitting, you will see
the following on the screen of your computer: (1) Sequence-1
contains 205 nucleic acid residues, of which only the one
(highlighted with red) at sequence position 128 is predicted to
be the methylation site; all the others are not. (2) Sequence-2
contains 271 residues, of which 7 are predicted as methylation
sites; they are located at sequence positions 6,12, 26, 62, 77, 246,
and 157, as highlighted with red. All these results are fully
consistent with the experimental observations.

Step 4. As shown in the lower panel of Fig. 4, you may also
choose batch prediction by entering your e-mail address and
your desired batch input file (in FASTA format of course) via the
Browse button. To see the sample of a batch input file, click the
button Batch-example. After clicking the button Batch-submit,
you will see “Your batch job is under computation; once the
results are available, you will be notified by e-mail.”

Step 5. Click the Supporting Information button to download the
benchmark dataset used in this study for training and testing
the predictor.

Step 6. Click the Citation button to find the relevant papers that
document the detailed development and algorithm of pRNAm-
PC.

Conclusions

The distribution of N®-methyladenosine (m®A) sites in RNA is
important for in-depth understanding of its regulatory mecha-
nism, and for drug development as well. Among the existing
high-throughput tools for characterizing the m°A sites in a
genome-wide scope, pPRNAm-PC is the most powerful one. It has
not escaped our notice that the approaches introduced here, such
as using the pseudo dinucleotide composition to represent RNA
samples and defining the pseudo components via a phys-
ical—chemical matrix of 2-tuple nucleotides, can also be used to
address many other important problems in genome analysis.


http://www.jci-bioinfo.cn/pRNAm-PC
http://www.jci-bioinfo.cn/pRNAm-PC
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| Read Me | Supporting Information | Citation |

Enter Query Seqences ]

Enter the sequence of query proteins in FASTA format (Example): the number of
RNA sequences is limited at 100 or less for each submission.

A

[ Submit ] [ Cancel ]

Or, Upload a File for Batch Prediction ]

minute for each RNA sequence.

Enter your e-mail address and upload the batch input file (Batch-example). The
predicted result will be sent to you by e-mail once completed; it usually takes 1

Upload file: |

|[Bmwse... ]

Your Email: [

Batch Submit Cancel

Fig.4. A semi-screenshot of the top page of the Web server pRNAm-PC at http://www.jci-bioinfo.cn/pRNAm-PC.
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