New Delhi metallo-β-lactamase (NDM-1): An update

Article in Journal of chemotherapy (Florence, Italy) · October 2011
DOI: 10.1179/joc.2011.23.5.263 · Source: PubMed

8 authors, including:

Shams Tabrez
King Abdulaziz University
93 PUBLICATIONS 929 CITATIONS

Jabir Nasimudeen R
King Abdulaziz University
43 PUBLICATIONS 378 CITATIONS

Ghazi Al Damanhouri
King Abdulaziz University
95 PUBLICATIONS 675 CITATIONS

Some of the authors of this publication are also working on these related projects:

Metabolic Changes, Oxidative Stress and inflammation in Thalassemia Patients in Relation to Age, Gender, and Markers of Iron Status View project

Special Issue View project

All content following this page was uploaded by Shams Tabrez on 28 May 2017.
The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
New Delhi Metallo-β-Lactamase (NDM-1): An Update

S. SHAKIL 1,2* - E.I. AZHAR 1,3 - S. TABREZ 2 - M.A. KAMAL 2 - N.R. JABIR 2
A.M. ABUZENADAH 2 - G.A. DAMANHOURI 2 - Q. ALAM 2

1 Special Infectious Agents Unit - BSL3, King Fahed Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia.
2 King Fahad Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia.
3 Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.

Correspondence: Dr Shazi Shakil, Assistant Professor, King Fahd Medical Research Center, King Abdul Aziz University, Jeddah-21589, Saudi Arabia.
Email: shazicool@rediffmail.com, shazibiotech@gmail.com Telephone: +966564257457. Fax: +96626952076

Summary

New Delhi metallo-β-lactamase (NDM-1) is a novel broad spectrum carbapenemase with ability to inactivate all β-lactams except aztreonam. However, most of the NDM-1-producers also produce aztreonam hydrolysing-β-lactamases thereby making these pathogens absolutely resistant to all β-lactams. The blaNDM-1 gene encodes a 27.5 kDa protein of 269 amino acids. It shares very little identity with other metallo-β-lactamases. Maximum identity has been observed to VIM-1/VIM-2 (32.4%). This mini-review is an update of the scientific literature for the said enzyme. Following the recommendation of David Livermore, we further propose to combine “aztreonam” and “inhibitor of the NDM-1-producers”. The inhibitor should be ‘versatile’ as well, i.e. it should have the ability to inhibit most of the variants of aztreonam hydrolysing-β-lactamases prevalent in the concerned setting. We strongly recommend surveillance studies using aztreonam/NXL-104-combination against NDM-1-producing pathogens in different geographical regions across the globe.

Key words: Aztreonam, carbapenemases, Gram-negative pathogens, metallo-β-lactamases, multidrug resistance, NDM-1.

INTRODUCTION

Emergence of multidrug-resistant bacteria is a cause of increasing concern in community as well as hospital settings 1,2. Gram-negative pathogens have been recognized as some of the most problematic bacterial challenges by The Infectious Diseases Society of America 3. Out of six ESKAPE pathogens (recognized as particularly troubling), four are Gram-negative 4. Hence the attention of the scientific community has shifted to the resistant Gram-negative bacteria 5. Several drugs like linezolid, tigecycline 6 and daptomycin are available for treatment of β-lactam-resistant Gram-positive infections. In contrast, carbapenemases are considered as the ultimate treatment option for extended-spectrum β-lactamase (ESBL)-producing bacterial pathogens 7. Simultaneous resistance to advanced-generation cephalosporins and carbapenemases in pathogens might lead to therapeutic dead-ends 8. Experts agree that pathogens that co-produce at least one carbapenemase together with an ESBL are particularly challenging 5.

NEW DELHI METALLO-β-LACTAMASE (NDM-1)

Carbapenemases are either serine enzymes or metallo-β-lactamases (MLBs) that utilize at least one zinc ion for hydrolysis. New Delhi metallo-β-lactamase (NDM-1) is a novel broad spectrum β-lactamase (class B carbapenemase) with the ability to inactivate all β-lactams except aztreonam. However, most of the NDM-1 producers also produce aztreonam hydrolysing β-lactamases (e.g. CTX-M and CMY-type ESBLs) thereby making these pathogens absolutely resistant to all β-lactams 9. NDM-1 was first characterized in 2009 from Klebsiella pneumoniae and Escherichia coli isolated from a Swedish patient who had received medical care in New Delhi, India and hence named after the Indian capital 9. Most of the NDM-1-producing bacteria remain susceptible only to colistin and tigecycline. Renowned experts from across the globe have considered the spread of NDM-1 as a serious threat to the treatment of Gram-negative infections by the existing antibiotic armory 10,11.

GLOBAL EPIDEMIOLOGY

After the first report 9 in 2009, Indian authors reported detection of 22 NDM-1-producing strains from Mumbai, the economic capital of India 12. This was followed by detection of NDM-1-producing bacteria from the UK 13 and the USA 14. A team of scientists reported 37 NDM-1-producing isolates from the UK, 44 isolates from Chennai (South India), 26 isolates from Haryana (North India), and 73 isolates from various other sites in the Indian subcontinent 15. Most of the isolates were susceptible only to colistin and tigecycline. In 2010 itself, Canada 16, Japan 17 and the Middle East (Sultanate of Oman) 18 also confirmed their first cases of NDM-1-harboring pathogens. Subsequently, the first death due to infection by NDM-1-producing bacteria was reported in August 2010 19.

In a 2011 study, Walsh et al measured the prevalence of blaNDM-1 in drinking water and seepage samples in New Delhi while using sewage effluent samples from Cardiff Wastewater Treatment Works, Tremorfa, Wales as control. The authors detected blaNDM-1 in two of 50 drinking-water samples and 51 of 171 seepage samples from New Delhi; the gene was not found in any sample from Cardiff 20. In a multicenter study a total of 11,298 clinical Gram-negative bacilli, covering Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa, were collected for PCR-based surveillance of blaNDM-1 from 57 hospitals representing 18 provinces in China 21. However, only four isolates (A. baumannii), which were clonally unrelated were confirmed positive for blaNDM-1.

There is a significant environmental dissemination of NDM-1 across the globe 22. Recently, Kus et al published the first re-
port of bla_{NDM-1}. Positive bacteria which were locally acquired in Canada \(^{23}\), NDM-1-producing pathogens are continually being reported from across the globe as we write this article in the year 2011 \(^{24,25}\). May 2011 marked the first detection of NDM-1-producing pathogens in Switzerland \(^{26}\) followed by a first report of the same from the Balkan region in June 2011 \(^{28}\). Yamamoto et al have reported the emergence of NDM-1-positive capsulated *E. coli* with high resistance to serum killing in Japan. Scientists agree that bla_{NDM-1} is widely distributed among Enterobacteriaceae and has geographically exhibited extremely rapid and global spread \(^{29}\). International travel does play a role in the spread of NDM-1 \(^{30}\). Several authors have found the acquisition of NDM-1-producing bacteria in their study subjects linked to previous hospitalizations in NDM-1-harboring countries like India, \(^{31}\) Pakistan, Montenegro, Kosovo etc. \(^{32}\). Kaase et al reported the first variant of NDM-1 (designated as NDM-2) in June 2011 which possessed a C to G substitution at position 82 resulting in an amino acid substitution of proline to alanine at position 28 \(^{33}\).

METHODS USED FOR DETECTION OF NDM-1

In a study by Nordmann et al \(^{34}\), a combined test (imipenem/imipenem + EDTA), the Etest MBL, and automated susceptibility testing by Vitek2 (bioMérieux) identified those NDM-1 producers as verified by PCR using specific primers. The authors suggested that the screening for carriers of NDM-1 producers might be based on media such as the ChromID ESBL culture medium or the CHROMagar KPC culture medium and colonies growing on these screening media could then be verified as NDM-1 producers with molecular methods \(^{35}\). Recently Krüttgen et al \(^{36}\) described a real-time PCR assay as well as two conventional PCR assays to detect bla_{NDM-1} gene directly from bacterial isolates. The specificity of the assay was verified in silico as well as with a large panel of 84 clinically relevant bacterial isolates. The specificity of the assay was verified in silico as well as with a large panel of 84 clinically relevant bacteria \(^{36}\). In another 2011 study, the authors evaluated a DNA microarray (Check-MDR CT102) meant for the rapid detection of TEM, SHV and CTX-M type ESBLs, and also for KPC, OXA-48, VIM, IMP, and NDM-1 carbapenemases on a total of 144 Gram-negative strains. The sensitivity and specificity were 100% for most of the tested genes. The authors confirmed that the said microarray allowed accurate identification of common ESBL and carbapenemase-producers from bacterial cultures \(^{37}\). In the proceedings of the 21st European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) scientists recommended rapid detection of NDM-1 producers using Hodge tests, synergy tests, automated systems or agreed algorithms. The strains that test positive should be subjected to molecular tests (bla_{NDM-1} PCR) \(^{38}\).

STRUCTURAL AND FUNCTIONAL PROPERTIES OF NDM-1

The blaNDM-1 open reading frame was found to encode a putative 27.5 kDa protein of 269 amino acids \(^9\) (theoretical pI 6.9). The sequence and behavior of NDM-1 during gel filtration and mass spectrometry indicated that it was actively present as a monomer. NDM-1 was found to possess a leader peptide, with probable cleavage site at position 19 between two alanines. It was found to share the additional loop of the VIM enzymes at positions 34 and 47. Moreover, NDM-1 was found to possess a unique additional sequence at positions 162 to 166. It shared very little identity with other MBLs. Maximum identity was observed to VIM-1/VIM-2 (32.4%). NDM-1 was also found to possess a tyrosine at position 222 instead of the universally conserved tryptophan \(^8\). NDM-1 showed tight binding (low Km values) to most cephalosporins and, in particular, to cefotaxime, ceftazidime, and ceftazolin. Contrary to most MBLs, NDM-1 was observed to have a relatively tight binding to the penicillins. It was found to bind less tightly to the carbapenem compared as compared to IMP-1 or VIM-2. In an important study by Wang and Chou, the authors reported docking of NDM-1 with imipenem and meropenem \(^{39}\). The authors observed that imipenem and meropenem were hydrolyzed while sitting in a binding pocket of NDM-1 formed by 9 and 12 amino acid residues, respectively \(^39\). Based on their findings, they proposed a model for a catalytic mechanism of NDM-1. As per their model, the metal binding Asp60 acted as the general base that activated the water nucleophile, while the protonation of Asp60 resulted in the cleavage of its bond to the metal ion \(^{39}\).

As a recent development, Zhang and Hao reported the crystal structure of NDM-1 in complex with a hydrolyzed ampicillin at its active site at 1.3Å resolution \(^{40}\). The authors found that ampicillin binds to the more hydrophobic L3 loop of NDM-1 through hydrophobic interactions. The study disclosed a longer distance between the 2 zinc ions at the active site, thereby giving insight into the lower activity of the enzyme for the studied ligand. Interestingly, structural comparisons with other MBLs revealed a new hydrolysis mechanism applicable to all three subclasses of MBLs in which a proton comes from the newly formed carbonyl group in the β-lactam ring. The authors expected that the results of their study might be helpful in the design of common inhibitors to all MBLs \(^{40}\).

THERAPY AGAINST NDM-1-PRODUCING PATHOGENS

As stated elsewhere in this article, NDM-1 does not attack aztreonam, a monobactam antibiotic. However, aztreonam resistance in NDM-1-producers occurs due to simultaneous presence of other β-lactamases capable of hydrolyzing aztreonam (like CTX-M or CMY-type enzymes) in the same pathogen. Moreover, directly targeting NDM-1 enzyme by β-lactamase inhibitors available to date is not possible because it has a metal ion (Zinc) in its active site instead of serine. We agree with the suggestion of the honorable expert, David Livermore, who pleaded with industry to combine NXl-104 with aztreonam. NXL-104 is a novel β-lactamase inhibitor (trans-7-oxo-6-(sulfonyl)-1,6-diazabicyclo[3.2.1]octan-2-carboxamide, a representative of a novel class of bridged bicyclo[3.2.1]diazabicyclooctanones) that inactivates active serine-β-lactamases by forming a stable covalent complex. It shows excellent inhibition properties against bacterial enzymes belonging to Ambler classes A and C, including: TEM, SHV, CTX-M-type ESBLs (and also other minor variants); Class A carbapenemases (most notably KPC-2); Resident AmpC-type β-lactamasas (E. coli, P. aeruginosa); and plasmid-mediated Class C β-lactamasas (e.g. CMY-type enzymes) \(^{41}\). David Livermore has recently shown the potential of aztreonam-NXL-104 combination against NDM-1-producing bacteria \(^{42}\). The authors found that aztreonam-NXL104 was active against all carbapenemase producers at 4 and 4 μg/ml, including those with metallo-β-lactamasas \(^{42}\).

SUGGESTION

Following this, we further propose to combine aztreonam and “inhibitor of the most frequently encountered aztreonam hydrolyzing-β-lactamases in a given setting” as a possible strategy against NDM-1 producers. The status of “most efficient
In the previous study, we tested the efficiency of traditional β-lactamase-inhibitors against CTX-M variants. CTX-Ms are the most prevalent ESBL type in India and hence the most frequently encountered aztreonam-hydrolyzing β-lactamases in the said region. We found that aztreonam-hydrolyzing β-lactamases are not included in the study. Consequently, there is a predominance of CTX-M genotypes among the ESBL-producing bacteria in Saudi Arabia. Hence combining aztreonam and the 'most efficient CTX-M-inhibitor' might be the therapy of choice for ND-M-producing pathogens in this setting as well. The inhibitor should be versatile as well, i.e. it should have the ability to inhibit most of the CTX-M variants prevalent in the concerned setting if not all. In view of emerging evidence, we strongly recommend surveillance studies to investigate the potential of the aztreonam-ESBL combination against ND-M-producing pathogens in different geographical regions across the globe.

ACKNOWLEDGEMENTS: Shadi Shahid thanks Karen Bush, Patrick Nordmann and David Livermore whose noble works formed the very foundation of this article. SS extends sincere thanks to all of the staff of King Fahd Medical Research Center, KAU, Saudi Arabia for co-operation.

No competing financial interests exist.

REFERENCES

