
JKAU: Comp. IT., Vol. 1 No. 2, pp: 69-103 (2012 A.D./ 1434 A.H.)

DOI: 10.4197 / Comp. 1-2.4

69

Lexical Noise Analysis and Removal in

Intelligent Search Engines

Tareq Jaber

Faculty of Computing and Information Technology
King Abdulaziz University, Jeddah, KSA

tjaber1@kau.edu.sa

Abstract. In the field of intelligent information retrieval (IR), latent

semantic indexing (LSI) is a popular technique used to retrieve

information related more in meaning than in lexical matching. This

technique overcomes the problems associated with synonymy and

polysemy (common causes of inaccuracy in matching algorithms). A

core component in the process is the use of the singular value

decomposition (SVD) which acts as a mathematical model for the

lexical noise in the term document matrix (TDM). This paper

investigates various aspects of LSI from the viewpoint of noise

modeling and removal in image processing. A discussion about and an

investigation into, mathematical modeling for lexical noise in the

TDM is presented. The work addresses a definition for noise in text

processing and seeks to determine the best structure of the TDM. In

other words, the structure of the TDM that would facilitate efficient

searching within the LSI.

Keywords: latent semantic indexing, information retrieval, singular

value decomposition, image processing, noise modeling

and removal.

1 Introduction

The world is becoming increasingly digitized and there has been a

massive expansion in the volume of data that is available online in a

variety of forms. In addition, due to the so-called internet revolution,

anyone can access millions of pages on the web. In 1998 researchers

estimated that there were about 300 million web pages on the internet
[1,2]

70 Tareq Jaber

and now, ten years later, this estimate will have grown significantly.

Having this information is useless unless there is some efficient way of

retrieving appropriate or relevant information
[3]

. It can be argued that

there is a clear need to provide new approaches that enhance the data

retrieval processes and this is one of the driving forces behind the

continued interest in information retrieval (IR) systems.

Traditional approaches to IR, such as those employed by the major

search engines, are based on keyword matching. However, this method of

IR presents major problems in terms of handling the increasingly large

volumes of data, and in the accuracy of the results obtained. It has been

suggested that individual terms and keywords are not adequate

discriminators of the semantic content of the documents and queries
[4]

.

Latent semantic indexing (LSI) is a well-known technique used in

IR
[3]

. LSI has proved popular in IR as the technique can cope with the

problems and inaccuracies associated with both synonymy and polysemy.

Synonymy is the situation where there are many ways to express a

given concept, such as cellphone, mobile and cellular. Therefore the

literal terms in a user′s query may not match those of relevant documents.

Synonymy results in low recall, where recall is defined as the ratio of the

number of the relevant documents retrieved to the number of relevant

documents in the database
[3]

.

Polysemy refers to single words that have more than one meaning,

e.g. plane could refer to an aeroplane, or a flat surface. As a

consequence, polysematic terms in queries can lead to matches with

irrelevant documents - in effect erroneous matches. Polysemy results in

low precision, which is defined as the ratio of the number of relevant

documents retrieved to the total number of documents retrieved in a

query.

In other words the problem is to determine whether the system has

to deal with the same word with different meanings or different words

that happen to look, or sound, the same
[3]

.

LSI is based on the assumption that words used in a document have

some latent semantic correlation. Hence, when these words are compared

across documents, certain sets of words will be shared among many

documents and absent in others. These words, and the documents they

Lexical Noise Analysis and Removal in Intelligent Search Engines 71

share, are said to be semantically close to each other
[3,5]

. A typical LSI

system is implemented in several stages
[3,5]

 which are illustrated later in

the paper.

We proposed in
[6,7]

 a new approach to the LSI process based on the

possibility of using image processing techniques in text document

retrieval. This research will focus on different aspects of LSI e.g. lexical

noise analysis, modeling and removal, and the best database structure

which facilitates efficient searching. In
[8]

 this work was presented in a

concise manner, and this paper proposes broad investigation in tandem

with full analysis. Experimentation is based upon the generation and

testing of ’random’ TDMs which exhibit different structures, degrees of

sparsity and distribution. Moreover, a simple and clear illustration for the

decomposition step in the LSI system is presented, which represents the

SVD algorithm with different k − values. In addition, a greater

understanding of the functionality of LSI as a technique used for

conceptual and semantic retrieving is provided.

This paper is organised in the following sections. Section 2

introduces the existing work. The LSI components are illustrated in

section 3. This gives an overview of the LSI system and the processes

involved, along with the necessary mathematical background theory.

Section 4 provides a review of noise models in image processing

applications and the most common filters used to remove the noise. The

detailed investigation is presented in section 5. Concluding remarks are

given in section 6.

2 Existing Work

It can be argued that there is a clear need to provide new approaches

that enhance the data retrieval processes and this is one of the driving

forces behind the continued interest in IR systems. In particular, the large

body of research in LSI systems reflects this interest. Within LSI systems

attention has focused on those elements that are viewed as being

computationally intensive and corresponding slow, e.g. preprocessing

steps or matrix decomposition algorithms. For example, research into the

preprocessing stage looks at how to determine what constitutes the

keywords in a database, which describe the database and are used as

references to the documents titles. The parsing rule used by most

researchers
[3,5]

 requires that keywords appear in more than one

72 Tareq Jaber

documents but do not appear in all documents. The stop words list

constructed by Fox
[9]

 has been widely accepted as the norm for

identifying the non-meaningful words that can be eliminated from a

keywords list.

A considerable amount of work has been devoted as well to

producing efficient stemming algorithms for IR
[10,11]

. A stemming

algorithm ’breaks down’ words into stems, e.g. the keywords " read ",

“reader”, "reading", can all be ’broken down’ into the stem “read”. This

stem can then be used as one keyword rather than having to store the

original three separate keywords.

As with stemming algorithms, there exists a considerable body of

work on term weighting
[3,12]

. Term weighting is one of the common

methods for improving retrieval performance. It functions by giving

terms in the TDM different weights. In practice, local and global weights

are applied to increase, or decrease, the importance of terms within or

among documents in the TDM.

Research has moved beyond the basics of the LSI process, and

several alternative decomposition algorithms to SVD have been

suggested, including QR factorisation
[3]

 and semi discrete matrix

decomposition (SDD)
[13]

. In Unitary Operators on the Document

Space
[14]

, Hoenkamp shows that the decomposition underlying LSI is an

example of a unitary operator. Hoenkamp proposed the use of the Haar

wavelet transform (HWT) as an alternative as this transpose shares the

unitary property and has a much reduced computational cost. This line of

research showed some promising initial results. Furthermore, the concept

of representing the TDM as a gray scale image, as illustrated in Fig. 1

(The Cochrane database contains titles of medical studies
[15]

) was

postulated. In such a model the white dots in the image (non-zero values)

represent the keywords in the document sets. In addition, it has been

argued that using the HWT to remove noise from an image is equivalent

to using the HWT to remove lexical noise from the TDM.

There are several studies into using LSI in tandem with other

techniques, such as document clustering
[16]

. The results reported in
[16]

show that the accuracy of the LSI technique may be improved when

retrieving from clustered subsets. However the number of clusters to

choose remains an unsolved problem, which affects the performance of a

Lexical Noise Analysis and Removal in Intelligent Search Engines 73

clustered SVD retrieval system. One of the most recent works has

emphasized on dimension reduction in the LSI system
[17]

.

Fig. 1 Cochrane’s TDM represented as a grey scale image.

Perhaps the most surprising applications of LSI research have been

in fields other than IR. The principles underlying LSI have been applied

to imbue machines with human-like learning capabilities
[18,19]

. In
[20]

 the

use of both keywords and image features to represent documents has

been presented in order to improve the retrieval performance. Other

researchers have used LSI in the field of image retrieval
[21]

.

3 LSI System Components

In this section the different components of the standard LSI are

illustrated.

3.1 Document Preprocessing Description

As mentioned before, the database needs to be converted to a TDM.

Before this can be achieved, preprocessing has to be carried out on the

document set. Punctuation and meaningless words need to be removed,

and the keywords necessary for construction have to be extracted for

comparison with the user′s query
[3]

.

Initially all the text in each entry of the database is extracted, and

joined together to form a large collection of the terms that appear in each

of the documents. This list is then processed by:

• Removing punctuation characters "0123456789:;:;′ ()[] etc:", as

these do not contribute to the meaning of terms in the documents.

74 Tareq Jaber

• Removing "stop words". These are words that have no meaning

and so do not represent any of the semantic structure of the documents.

Examples of "stop words" are the, probably, however, etc.

• The next step in preprocessing involves removing duplicate words

in the list of keywords. Because all the words were extracted from each

entry in the table, many words will appear more than once and have to be

removed. This is achieved by sorting all the terms in the keywords list

alphabetically, thus all duplicate words are adjacent in the list. A

recursive function can be used to compare each adjacent pair of words in

the keywords list, and if they are the same, the duplicate term is deleted.

• Finally, a list that comprises all keywords in the documents set is

obtained, along with a list of keywords in each individual document.

3.2 Memos Database Example

To illustrate the preprocessing step, let consider the Memos
Database as an example

[5]
. The titles in Memos database are presented in

Table 1.

Table 1. Memos Document Set
[5]

.

Lexical Noise Analysis and Removal in Intelligent Search Engines 75

Preprocessing produces the following set of unique keywords (in

Table shown in bold):
{human, computer, interface, survey, user, system, response,

time, EPS, trees, graph, minors}

3.3 Term Document Matrix

Once preprocessing is complete, the TDM is constructed from a list

of terms that characterizes the structure of all the documents and the

keyword list for each document that was generated in the previous step.

Each row of the matrix is assigned to a term, and each column of the

matrix is assigned to a document. The value that appears in position (i, j)

of the matrix is the number of times that the keyword assigned to the ith

row appears in the document assigned to the jth column. Most values in

the matrix are zero, as only a subset of keywords appears in any given

document. The TDM generated for the Memos example is shown in

Table 2.

Table 2. TDM for Memos Example
[5]

.

76 Tareq Jaber

Each column in the database can be considered as a vector

describing the document it represents, each row can be considered as a

vector describing the term that it represents. There is undoubtedly a great

deal of lexical noise in this process, as illustrated by the redundancy in

the matrix. The LSI process seeks to eliminate this redundancy by

decomposing the TDM using the SVD algorithm.

3.4 Query Vector

In order for searches to be carried out, queries must also be

represented in vector form. This is achieved by the same process that is

used to convert documents into columns in the TDM. Keywords are

extracted from the query, and if a keyword also appears in the document

set then the number of times it appears in the query is recorded using the

same format as one of the document vectors in the TDM. For example

the query ’response time’ would be converted to the form (0, 0, 0, 0, 0, 0,

1, 0, 0, 1, 0, 0) as ’response’ corresponds to the seventh row of the TDM,

and ’time’ corresponds to the tenth row, and each word appears once in

the query. In effect, the query is a pseudo-document.

3.5 Singular Value Decomposition (SVD)

A matrix M can be decomposed into an approximate, reduced, form

as:

 T
M U*S*V= (1)

Where U is the singular row vectors of M, S is a diagonal matrix holding

the singular values of M in ascending order and VT is the transpose of the

singular value column vectors of M [3]
. The diagonal elements in S are

stored in ascending order
[3]

. The higher order values are larger and this

means that they represent more of the semantic content of M (Fig. 2). By

contrast, the lower order values are small and can be viewed as "lexical

noise"
[14]

.

Fig. 2. SVD decomposition of (t x d) TDM.

Lexical Noise Analysis and Removal in Intelligent Search Engines 77

In Fig. 2, t = number of terms in the TDM, d = number of documents in

the TDM, and r = the rank of M.

At the heart of LSI is that the latent semantic structure of the

document set is identified by the matrix of diagonal values (Fig. 3).

Fig. 3. Diagonal Matrix S. The inner boxes represent singular values.

The original TDM can be approximated by multiplying the three

matrices U, S and V. However, if the lowest singular values of S are

discarded, then the TDM can be approximated by:

T

a k k k
M U *S *V= (2)

Where k < r, Ma = approximated TDM, Uk = first k columns of U, Sk =

the new matrix of singular values, and Vk
T = transpose of the first k

columns of V [3]
 as illustrated in Fig. 4.

Fig. 4. Approximated TDM.

The resultant approximated matrix has the same dimensions as the

original TDM and represents the best k-rank approximation of M in terms

of the Frobenius Norm and p-Norm
[22]

. The query can then be compared

to each document in the new approximated matrix. With "lexical noise"

removed, this should lead to improved results when the query is

compared to the approximated documents.

3.6 Metrics Methodology

Each column of the TDM represents a document in the original

document set in vector form as shown in Table 3. This is also true for the

approximated TDM. The query is a row vector constructed such that its

transpose can be considered equivalent to a document vector containing

78 Tareq Jaber

only the words that appear in the query. In effect, the query is a pseudo-

document. For example the query (0 1 0) is a 3 dimensional row vector.

Table 3. Each column represents a document as a three dimensional column.

Each document vector in the approximated TDM can then be

compared to the query by calculating the cosine between them. The

cosine is calculated from the following equation:

T

j

T

j

a
COS

a

q

q
Φ = (3)

Where aT
j is the transpose of the jth document vector in the approximated

matrix a, q is the query vector, ||aT
j|| is the modulus of aT

j , ||q|| is the

modulus of q.

The modulus is equivalent to the Euclidean norm: ||q|| = √ (q1
2
 + q2

2
 +

q3
2… + qn-1

2
 + qn

2).

A cosine value of 1 means that both vectors exist in exactly the same

dimensional space. Below this value the vectors become steadily less

similar. In order to determine which documents are similar enough to be

returned in response to a user’s query, a threshold of 0.5 is set which it is

usually selected by the most researchers in this area. A suitable threshold

value could be determined based on certain heuristics and experiments,

which could be an interesting topic for future study
[16], [23]

.

4 Noise Modeling and Removal in Image Processing

This section provides a study of the mathematical representation and

removal of noise in image processing. This brief understanding will be

used to address some important issues in LSI systems. In particular,

modeling the lexical noise in the TDM, that represents defining the

nature of the noise in the text processing. Furthermore, to provide a

Lexical Noise Analysis and Removal in Intelligent Search Engines 79

comparison between the noise in both LSI and image processing areas, in

order to evaluate the use of image processing techniques for lexical noise

removal in text processing.

Noise is any undesired information that contaminates an image. The

aim of image processing is to improve or enhance the quality of an image

by removing the noise from the image. Most of the techniques employed

in processing an image look at a pixel and its immediate neighbors and

make some sort of calculation involving these values. Noise can usually

take the form of extreme intensity values. However, in some cases, the

high intensity values represent important information that should not be

lost. Clearly, addressing the nature of noise is an important issue for

noise filtering applications.

The next two sections describe some of the most common noise

models that appear in images followed by methods used to remove it.

4.1 Various Noise Models

Noise applied to a noise free image can degrade the image to such a

point that important features are no longer observable. Noise can arise

from many places such as sensor problems in a camera, dust covering the

optics or can be picked up during a point to point transmission of an

image
[24]

. The classification of noise is based upon the shape of the

probability density function (PDF) or histogram for the noise.

In typical images the noise can be modeled with either a salt − and –
pepper (impulse), uniform, or gaussian (normal) distribution

[24-26]
. The

three models are clarified below.

4.1.1 Salt-and-Pepper Noise
This type of noise commonly appears in images. This noise is named

for the salt − and − pepper appearance for the infected image. With this

noise, the corrupted pixels are either set to the maximum value or to zero.

Unaffected pixels always remain unchanged.

The PDF of salt − and − pepper noise is given by the following

equation:

 ()
a

b

p z a

p

0

for

P z for z b

otherwise

=⎧
⎪

= =⎨
⎪
⎩

 (4)

80 Tareq Jaber

Where a and b represent two separate gray-levels. If b > a, gray-level b
will appear as a light dot in the image. Conversely, level a will appear as

a dark dot. If neither probability is zero, and especially if they are

approximately equal, impulse noise values will resemble salt − and −
pepper dots randomly distributed over the image

[25]
.

4.1.2 Uniform Noise

Here, the noise gives a diffused look to the picture. Uniform noise is

useful because it can be used to generate any other type of noise

distribution and is often used to degrade images for the evaluation of

image restoration algorithms because it provides the most unbiased or

neutral noise model
[26]

.

The PDF of uniform noise is given by:

1

()

0

if a z b
b aP z

otherwise

⎧ ≤ ≤⎪
−= ⎨

⎪⎩

 (5)

Where z represents gray-level.

4.1.3 Gaussian Noise
This noise blurs the image and hides the detail of the image. It is

characterized by two parameters, mean and variance.

The PDF of Gaussian noise is given by:

 () ()
2 2

21

2

z

P z e
μ σ

σ π

− −

= (6)

Where z represents gray-level, µ is the mean of average value of z, and σ
is its standard deviation. The standard deviation squared, σ

2
, is called the

variance of z. When z is described by the PDF above, approximately 70%

of its values will be in the range [(µ − σ) , (µ + σ)], and about 95% will

be in the range [(µ − 2σ) , (µ + 2σ)]
[25]

.

4.2 Noise Removal Filters

The reduction of noise present in images is an important aspect of

image processing. It is generally recognized that noise removal should be

the first step of any image processing method. This section presents a

review of the most common spatial filters used to remove the noise.

Lexical Noise Analysis and Removal in Intelligent Search Engines 81

4.2.1 Average Filter
Averaging or mean filtering is a simple, intuitive and easy to

implement method of smoothing images, i.e. reducing the amount of

intensity variation between one pixel and the next. It is often used to

reduce noise in images. The average filter is the simplest linear spatial

filter. This is a lowpass filter, which removes high spatial frequencies

from an image. It works by passing a mask (usually a 3x3 grid) over the

image, calculating the mean or average intensity for the mask, and

setting the central pixel to this value. For example, Fig. 5 shows a mask

to be used on the left, and the group of pixels it will be applied to on the

right
[24]

.

Fig. 5. Average filter example.

4.2.2 Gaussian Filter
Another common linear spatial filter is the gaussian filter. This filter

gives a higher weighting to values which are closer (and thus should be

more influential) to the central pixel. It is used to blur or smooth images

and remove detail and noise, and in this sense it is similar to the average
filter, but will preserve edges better than the more basic average filter.

An example gaussian filter is given in Fig. 6.

Fig. 6. Gaussian filter example.

82 Tareq Jaber

This is also a lowpass filter, which attenuates high spatial

frequencies present in an image. This filter works very well in the

presence of additive Gaussian noise.

4.2.3 Median Filter
The median filter is a nonlinear spatial filter that is good at removing

salt − and − pepper noise from any kind of image. The strength of the

function is controlled by specifying the size of the neighborhood (the

surrounding pixels used for calculating the median value). This function

causes minimal blurring of the image. It also does a better job than the

average filter at preserving edges within an image.

The median filter considers each pixel in the image in turn and looks

at its nearby neighbors to decide whether or not it is representative of its

surroundings. It replaces the pixel with the median of those nearby

neighbors. Fig. 7 illustrates an example calculation, where a value that is

clearly wrong gets filtered out
[24]

.

Fig. 7. Median filter example.

The noisy pixel with intensity 87 would be filtered out and replaced

with 4, a much better approximation to the value.

However, there are some obvious problems with these filters. The

average filters are good at removing gaussian noise but blur the edges

and median filters will always filter in favour of the more dominant

region, and thus work very well with salt − and − pepper noise. Mean

Lexical Noise Analysis and Removal in Intelligent Search Engines 83

(average) filters average the central pixel with neighbouring pixels,

which is fine when all of the pixels are part of the same region. When the

filter is near an edge however, it starts to include pixels from what could

possibly be a variety of different regions.

5 Investigation Method

As mentioned before, the bulk of research into LSI systems has

focused on:

• the preprocessing step on the database.

• the decomposition step, by testing different alternatives for the

SVD.

• the clustering technique to deal with large databases.

• the determination of the best k − value in the SVD algorithm.

However, there is a lack of research into mathematical models for

the noise in the LSI system. As shown, in many seminal works on LSI,

the mathematical perspectives of the LSI system components have been

presented, e.g. TDM decomposition, which represents the lexical noise

removal step, and similarity measure (cosine) to rank documents

according to their similarity with a query. There is not much work

investigating the nature of the noise in the TDM which represents a

database.

The preceding section presented a brief overview of noise in image

processing and the various techniques used to remove such noise from

images. Using this information as a base some important issues in LSI

system will be addressed. In particular, attention will focus on modeling

the lexical noise in the TDM, which represents defining the nature of the

noise in text processing, and the different types of this noise which can

be specified by looking to the sources of each noise.

In
[14]

, the TDM was visualized and treated as an image. It was

suggested that image processing techniques could be applied to this

visualization in the LSI system as a first step to assist in eliminating noise

from the TDM. The intention was to improve the quality of the LSI

application in terms of computation cost. This investigation can explain

the suggestion of applying these techniques to the concept of ’noise’ in

the TDM visualization.

84 Tareq Jaber

5.1 Lexical Noise

After the creation of the TDM, that is, a two-dimensional matrix that

represents the number of times a keyword appears in each document in

the database, the resulting matrix will be sparse, that is a large proportion

of elements will be zero, as each keyword will only appear in a relatively

small number of documents. The zeros in the matrix represent lexical

noise or redundancy in the sparse matrix as clearly illustrated in our

previous work
[27]

.

It is suggested that there are (at least) three views, or types, of noise

in the context of LSI as the following:

• Traditional noise as viewed in LSI - e.g. the stop words (a, an, of,

the, etc.). This type of noise is usually processed and removed at the

preprocessing step for the database.

• Noise generated by poor structure of the database or query model

being used. Longer document descriptions increase the number of the

keywords and the distribution of the non-zero values in the TDM, which

in turn helps in improving the semantic meaning among the documents in

the database. While on the other hand, the shorter document descriptions

represent poor database structure that does not support LSI searching, as

the sparseness in the TDM increases for such types of structure. More

investigation on this type or view of noise is presented in the next

section.

• New types of noise being generated by spammers or others trying

to avoid filtering systems on mailers. This view of noise can be explained

by giving an example. Let consider a company is called Silver, and the

owners want to have this appear as many times as possible in a sentence.

Some advertisers will not allow this so instead of saying

"Buy from Silver as Silver is the best trader available and Silver will

always give good value and Silver will never let you down".

They will reword the line by writing

"Buy from Silver as Sil ∗ ver is the best trader available and S ∗

ilver will always give good value and Silve ∗ r will never let you down".

This type of restructuring makes it difficult for a simple filter to

detect the occurrence of Silver as the structure of the word has been

Lexical Noise Analysis and Removal in Intelligent Search Engines 85

adjusted (by the inclusion of a simple ’buzz’ letter). However, a human

reader can still detect the word with ease. It is a feature of the way that

people read information. Many examples of this type of noise occur in e-

mails, as spammers try to avoid spam filters with this type of approach.

Such structures can be viewed as noise, but how this noise can be

represented, detected and removed from a message is an interesting

question, and suitable for research in future work.

The noise in text processing context is quite subtle and complex. A

typical TDM is visualized as a typical grey-scale image. An 8-bit grey-

scale image will have values between 0 and 255, and is likely to have a

good spread of values in this range. In a typical TDM, most values are 0

or 1. Hence, noise reduction using the conventional image processing

filters mentioned above will not be able to remove the redundancy in the

TDM e.g. by passing a mask over the TDM visualization. Even before

applying these filters, most values in a TDM are already close to zero.

The difference between redundant information and important information

may simply be less clear cut. Candidates can be found in image

processing applications, which have similar aims as LSI, but under the

guise of lossless and lossy compression
[14]

. The choice of such techniques

can be explained by the following:

• One of the advantages of LSI is that it seems to remove (lexical)

noise from the TDM by dimension reduction. In SVD, dimension

reduction is achieved by zeroing the smallest eigen values in the diagonal

matrix S.

• The analog for the image processing transform is to zero the

smallest coefficients.

• In both cases this is interpreted as removing (lexical) noise.

The next section presents an investigation into the structure of the

TDM in the LSI system. Test TDMs that exhibit certain features are

generated and tested in the LSI system, with the aim of determining the

best database structure which will lead to an effective LSI searching.

5.2 Term Document Matrix (TDM) Modeling

This section presents different investigations for the LSI system,

more precisely on the TDM, and in addition provides a simple illustration

for the SVD algorithm at the decomposition stage in the LSI process. A

86 Tareq Jaber

number of TDMs and query vectors, with different structures and degrees

of sparsity, are generated and tested in the LSI system. The aim behind

this analysis is to study the effect of structure, degree of sparsity,

distribution and any other attributes of the TDM on the search results

with the obvious goal of determining the best characteristics of TDM that

will give the best results.

The LSI search is carried out for the different random TDMs which

are presented in the following sections. A number of figures for the

TDMs and the queries are generated to present clear illustrations.

5.2.1 The TDM Diagonal
This first group of experiments considers the effect on the LSI

system of nonzero values in the diagonal of the TDM, and varying the

number of non-zero elements in the query vector. The fact that the

singular values of the S diagonal matrix of the decomposed TDM are in

descending order is important. By keeping k singular values, the k

highest singular values are returned, which represents the lexical noise

removing step. Let us consider that the original TDM is a diagonal matrix

of ones, it is expected that the resultant three matrices of the

decomposition step are diagonal as well. Ignoring a number of singular

values in the S diagonal matrix will result in removing the same values in

the original TDM. With this database structure, the standard vector space

model (VSM), which is the model underpinning LSI but without the

SVD algorithm or the dimension reduction step, is predicted to

outperform the LSI system.

In other words, the LSI will perform inefficiently for such database

structures. The details of the investigation are presented in the following

examples:

• Example one: In this example a 15x15 diagonal matrix, where the

diagonal elements are ones and non-diagonal elements are zeros, is

generated to test in the LSI system, a pseudo query vector is also created.

For Fig. 8, the results of the search always return one document at

different k −values for the SVD algorithm in the LSI process, and it is the

first document in the TDM. At the decomposition step in the LSI system,

the SVD decomposes the TDM into three matrices, one of them the

diagonal matrix S, that holds the singular values of the original TDM in

Lexical Noise Analysis and Removal in Intelligent Search Engines 87

ascending order, in order to apply dimension reduction to this matrix to

remove the small singular values which represent the noise.

Fig. 8. Diagonal TDM of 1’s and one term query vector.

The same procedure is applied in the above example, where the

TDM is a diagonal matrix of ones, and it is decomposed into three

diagonal matrices. Since there is no change to the TDM, the singular

diagonal values of the S matrix are still ones, and applying the dimension

reduction at different k − values on the matrix will result in ignoring the

same diagonal values in the original TDM. Fig. 9 clarifies this point.

Fig. 9. The original diagonal TDM and the approximated TDM.

88 Tareq Jaber

This query will always return one document, that being the first

document in the TDM, which has a cosine value of one, indicating an

identical match with the query, it is also important to note that no other

cosine values are returned above zero for the other documents. This

occurs due to the query having only one term, and since the matrix is

diagonal, the term will only appear in one document, the first document

in this case.

• Example two: The query vector is amended for this example by

adding another term at the bottom of the vector as shown in Fig. 10. In

this example, and when the LSI is applied at different k−values, only one

document is returned which is the first in the TDM.

Fig. 10. Diagonal TDM of 1’s and two terms query vector

The query intersects the TDM at the first and last documents, and as

mentioned before the TDM is diagonal and therefore the S matrix is also

diagonal, and so removing any elements from the diagonal values results

in removing the same diagonal values in the original TDM. Thus, when

the SVD is applied at the range of k − values (1-14), only the first

document is returned, because at this range of values the last document,

which is document number 15, is ignored. It is important to note that,

applying the LSI at k−value 15, which means no dimension reduction

Lexical Noise Analysis and Removal in Intelligent Search Engines 89

occurs, returns the two documents, the first and the last documents in the

TDM, which have a cosine value of 0.7071. This indicates a high match

with the query, since the query differs from both documents by one term.

Suppose the VSM system is applied for this search query, since no

dimension reduction is performed. Two documents will be returned and

thus this baseline method outperforms the LSI system at this search for

such a database.

• Example three: Figure 11 shows that, the query is again amended,

by adding more terms, and used for the same database. In the case of

three terms, one term is added to the query which is term number four.

The query meets the documents one, four and fifteen, which have a

cosine value of 0.53. Therefore, if no dimension reduction, or in other

words the VSM, is applied, the three documents will be returned for this

query.

Fig. 11. Three and four terms query vectors.

When the SVD is applied at range of k−values (1-14), only the first

and the fourth documents are returned, and for k − values less than four

only the first document is returned. In the second case, four non-zero

items in the query intersect with four documents in the TDM, the first

and last two documents. Again for this case, the dimension reduction step

affects the number of documents returned as the values removed from the

S diagonal matrix are the same values in the original TDM. The four

documents can be returned with VSM as the cosine value they have is

0.5. As shown in the above examples, the similarity cosine value

90 Tareq Jaber

decreases as the number of terms in the query increases. Hence, for any

number of terms more than four in the search query, no results are

returned as the cosine value for all the documents is lower than 0.5.

The above examples clearly show that, such a TDM structure does

not support LSI searching, since it represents a very poor database, which

contains 15 documents each of which consists of only one word. Large

sizes of the same structure of TDM have been tested and produce the

same results.

5.2.2 The TDM Column
This section tests other structures within the TDM, in order to

determine more potential features that would improve efficiency. Let us

consider that the original TDM is a matrix of columns of ones, which

represents a database with certain documents containing all the keywords

in the database. The query vector with different length is investigated as

well. Again, it is expected that, this structure of database will not support

the LSI search, with no real impact for the decomposition step on the

results returned. The following examples show the results of this

examination:

• Example four: In this example a 15x15 matrix, where the first

column elements are ones and elsewhere are zeros, is generated to test in

the LSI search.

For Fig. 12, no results are returned in this search at any of the

k−values. As shown in the figure, the TDM has only one column of ones,

which is the first, and zeros elsewhere, and the query for this search

contains one term and it is the first one. The difference between the query

and the first document in the TDM is large, therefore the cosine value for

this document is less than 0.5, which is the threshold cosine value, all

documents not exceeding the threshold are not returned.

In the previous examples of TDM structure, the S diagonal matrix

was the same as the original TDM, which had diagonal values of ones,

therefore the stage of dimension reduction affects the original TDM by

eliminating some values.

Lexical Noise Analysis and Removal in Intelligent Search Engines 91

Fig. 12. TDM with one column of 1’s and one term query vector.

In this example, and at different k−values, the approximated TDM

remains the same as the original TDM with no change (no sparseness or

noise is removed). Fig. 13 shows the S diagonal matrix of the TDM.

Fig. 13. The S diagonal matrix of the column TDM.

As shown, the S diagonal matrix contains only one non-zero value

and it is the first value, whereas all other diagonal values are zeros,

because the original TDM only contains one column of ones, indicating a

bad distribution of the non-zero values in the TDM. As a result and since

the k−value for the SVD algorithm must be at least one, the dimension

92 Tareq Jaber

reduction stage at different k−values has no effect on the TDM, and thus,

the lexical noise is still present in the matrix.

• Example five: In Fig. 14, another column of ones is added to the

TDM, and the search is again applied for the same query.

Fig. 14. TDM with two columns of 1’s and one term query vector.

Again, the same scenario occurs as in the previous example, but

there is one more extra column of ones, which is the third in the TDM.

No results are returned at the different k − values for this query. For this

example, and for more than three terms in the query as well, the cosine

value of the two documents exceeds 0.5, and documents one and three in

the TDM are returned at the different k − values as will be shown in the

next example. The S diagonal matrix for this TDM contains, as in the

previous example, a high value and it is the first value of the diagonal,

the second and the third values are very small negative values, and all the

other diagonal values are zeros. The SVD at the small k − values (1, 2),

which remove these small values has insignificant impact on the TDM,

and again that is due to the bad distribution of the values in the TDM.

The next example presents more clarifications of these points.

• Example six: The example makes changes to the query by adding

some terms which results in improving the similarity by increasing the

cosine value between the query and the first document in the TDM.

Lexical Noise Analysis and Removal in Intelligent Search Engines 93

Consequently, and for more than three terms, the cosine value of this

document exceeds 0.5, and the document is returned at the different k −
values. The number of columns of ones is increased in this example, as

well as the number of terms in the query, as illustrated in Fig. 15, in order

to achieve sufficient similarity between the documents and the query

vector to exceed the threshold value 0.5.

Fig. 15. TDM with five columns of 1’s and four terms query vector.

For this search, five documents, which are represented by the five

ones columns in the TDM, are returned for any k − values in the range

(1-14).

The similarity cosine value for the five documents is 0.516, which

cannot be obtained at query with a number of terms less than four. The

order of the terms in the query is not important since the non-zeros

columns of the TDM are all ones. The different k − values have no effect

on the number of documents returned.

This can be explained by observing the diagonal matrix in Fig 16.

The S diagonal matrix for this TDM contains, as values (shown as zeros

in the figure), and all the other diagonal values are zeros. The

approximated TDM is roughly the same as the original one at the full

range of k − values, because removing these small negative values has a

minor impact on the TDM, as the concept of the TDM (non-zero

94 Tareq Jaber

elements) is preserved in the high positive value of the S diagonal matrix.

This can explain the reason for obtaining no results for both the LSI and

the standard VSM for this search query. In other words there is no

advantage in using the LSI system, in such a situation. Once again, this is

due to the bad distribution of the values in the TDM.

Fig. 16. The S diagonal matrix of the five columns TDM.

For the examples in this section, the TDM contains only a number of

columns of ones, these columns representing a document in the database.

In other words, all the keywords in the TDM appear only in these

documents while other documents contain no words. Such poor structure

in the databases does not reflect the basic trends in the LSI system, e.g.

very bad distribution for the non-zero values in the matrix (the

appearance for the keywords in the documents of the database), even

though the volume of non-zero values in the TDM according to the size

of the matrix is good especially in the last example. No results are

returned for query vectors of one, two or three terms, as the number

needs to exceed three terms in order to retrieve results, which is

impractical and regarded as a weakness of the database.

5.2.3 The TDM Row
Row structures for TDM are examined in this section, with the goal

of revealing more characteristics that would indicate an effective

Lexical Noise Analysis and Removal in Intelligent Search Engines 95

database structure. As in the previous structures, a poor performance is

expected from the LSI system, since a database with this structure

contains certain keywords that appear in all the documents, which does

not help in determining the semantic meaning between the documents in

the database. As before, the effect of the length of search query and the

decomposition step on this structure for the database are presented in the

analysis of the results in the following examples:

• Example seven: In this example a 15x15 matrix, where the first

row items are ones and elsewhere are zeros, is generated and tested in

LSI.

Fig. 17. TDM with one row of 1’s and one term query vector.

In Fig. 17, 15 results are returned in this search at the full range of k
− values. As shown in the figure, the TDM has one row of ones, which is

the first row, and zeros elsewhere, and the query for this search contains

one term and it is the first one as well. Hence there is an identical match

between the query and all the documents in the TDM, therefore the

cosine value for these documents is 1. It is clear that, if the query

contains terms other than the first one no results will be returned, as the

query intersects the TDM at the first row.

In this example, as in the previous structure of TDM, and at the

different k −values, the approximated TDM remains the same as the

original TDM with no change.

96 Tareq Jaber

Fig. 18. The S diagonal matrix of the row TDM.

As shown in Fig. 18, the S diagonal matrix has one non-zero value

which is the first value in the diagonal, whereas all other diagonal values

are zeros, because the original TDM contains only one row of ones,

which indicates bad distribution for the non-zero values in the TDM. As

a result and since the k − value for the SVD algorithm must be at least

one, the dimension reduction stage at different k − values has no effect

on the TDM.

If the number of keywords is increased in the search query, the

similarity cosine value is expected to decrease for the same database in

this example. Therefore, for more than four terms the cosine value of this

document does not exceed 0.5, and thus no documents are returned as

clarified in Fig. 19.

• Example eight: For the example shown in Fig. 20, a TDM with

two rows of ones, which are the first and third ones, and a query with two

terms, which are the first and the fourth ones, are tested in LSI.

In this search no results are obtained at the different k−values. The

query vector meets all the documents in the database at first value, and

differs at the third and the fourth values, which results in similarity

Lexical Noise Analysis and Removal in Intelligent Search Engines 97

cosine values less than 0.5. The S diagonal matrix for this TDM contains,

as experienced before, a high value and it is the first value of the

diagonal, and all the other diagonal values are zeros. The SVD at the full

range of k − values has no impact on the TDM, and again, that is due to

the bad distribution of the values in the TDM.

Fig. 19. Search queries for example seven.

Fig. 20. TDM with two rows of 1’s and two terms query vector.

98 Tareq Jaber

5.3 Analysis

In this paper, an initial investigation of the noise in the TDM has

been presented. Random TDMs with different structures and degrees of

sparsity were generated and tested in the LSI system using some random

query vectors. The goal being to determine the best description of the

TDM structure which gives the best search results. An LSI system

attempts to compare the conceptual meaning among documents rather

than words alone, by returning documents that are similar in meaning,

even though the keywords in the search query may not appear in the

document’s description. For the examples used in this work, the TDM

contains only diagonals of ones, a number of columns of ones or a

number of rows of ones have been tested. In the diagonal case, each

document contains only one term, which means the documents do not

share any words with others. The S diagonal matrix of the SVD algorithm

is the same as the original TDM, which means that the singular diagonal

values of the S matrix are still ones, and applying the dimension

reduction at different k – values on the matrix will result in ignoring the

same diagonal values in the original TDM resulting in the loss of

important information. The power of the LSI in finding the latent

semantic meaning in the database cannot be demonstrated for such

database structures.

For the column structure, each column represents a document in the

database, which means the keywords in the TDM appear only in these

documents while other documents contain no words. Therefore, some

documents identically match each other, while on the other hand with

other documents no words are shared. Such poor structure of databases

does not enable the LSI system to perform accurately, e.g. very bad

distribution of the keywords in the documents of the database, even

though the volume of non-zero values in the TDM according to the size

of the matrix is good. The non-zero values are usually preserved in the

first diagonal value of S, while the rest of the values in the diagonal are

zeros. Therefore, applying the SVD algorithm at different k −values does

not remove the lexical noise in the TDM. As a result the LSI and

standard VSM produce the same results in such cases.

The same scenario as the column structure is obtained with the row

structure. The only difference with this structure is that, non-zero rows

represent the appearance of a certain keyword in all the documents, and

Lexical Noise Analysis and Removal in Intelligent Search Engines 99

indicate at the same time that some keywords do not exist in any

documents. This is again a bad structure for the database, indicating a

bad distribution. These words that have dominant existence represent

stop words and they add no meaning to the documents. In addition the

dimension reduction has no affect on the original matrix.

Database structures used in these examples may not exist, as no

document is presented in the TDM unless it has a number of keywords,

and at the same time no keyword is indexed unless it appears in at least a

couple of documents. However, the aim behind the work presented in this

paper is to specify the good characteristics of a database that support the

LSI searching, as a technique used in finding the similarity between

documents. In addition, to present a simple and clear practical illustration

for the functionality of the LSI system, in particular the dimension

reduction stage.

In order to achieve an ideal effective structure, a good structure for

the database is needed as illustrated in the following:

• The sparsity (volume of non-zero values) and a good distribution

for the non-zero values in the TDM are very important attributes to

obtain a good structure of database that will support the effective use of

LSI searching

• Databases with more entries and longer document titles have more

keywords with better distribution within the documents. As a result, this

will produce better search results and support the use of the LSI system.

• The LSI system works better with large datasets, as such databases

assert the important features, listed above, necessary for effective

structure of database, which helps the SVD to deal with the lexical noise

more efficiently.

• Although a query vector with only one term is not useful in

determining relevant results, a search with too many keywords reduces

the similarity between documents and gives a low volume of results. A

query vector with a couple of keywords, which express the required

information, is needed for effective relevant searching.

This work also provides a good understanding of the LSI method,

particularly the dimension reduction stage, which is represented by the

SVD algorithm.

100 Tareq Jaber

5.4 Basis for Mathematical Model

The work presented in this paper describes and defines the nature of

the noise in text processing. In addition the various types of noise in

image processing are reviewed, and the different mathematical modeling

techniques for the noise are studied as well. This basic understanding will

be used as a base of future work on finding a mathematical model for the

lexical noise, in order to facilitate efficient searching within the LSI

system.

For example, let consider the Memos example presented in this

paper. If gaussian and salt−and−pepper are added to the TDM of

Memos database, and the signal to noise ratio (SNR) tool is applied to

measure the noise in the generated TDMs. The LSI search is applied for a

certain query. The results of this process are provided in Table 4.

Table 4. Memos Database: Searching "graph theory".

The Table shows that, the TDMs with additive gaussian and salt −
and − pepper have a higher SNR values than the original TDM, which

indicates that the noise has been reduced. However, the LSI search with

salt − and − pepper does not produce any result, while with the gaussian
TDM returns two documents for the search query. This may be due to the

fact that the lexical noise in the TDM more closely matches the

distribution of gaussian. A full investigation on producing a

mathematical model for noise in LSI is required, and forms an interesting

search direction.

6 Conclusion

The investigation of TDM modeling shows that, those databases

with more entries and longer document titles produce better search

results and supports the use of the LSI system. This result arises as larger

Lexical Noise Analysis and Removal in Intelligent Search Engines 101

databases and longer document descriptions increase the keywords

appearing in more than a couple of documents, which will improve the

semantic meaning in the documents set. In turn, this leads to a good

distribution of the non-zero values in the TDM. Consequently, this will

reduce the sparseness (lexical noise) in the TDM and allow the SVD

algorithm in the LSI process to show better performance. It can be

suggested that, there is a real need for seminal work geared to producing

a mathematical model for noise in LSI.

References

[1] K. Bharat and A. Broder, “A technique for measuring the relative size and overlap of

public web search engines,” Proceedings of the 7th International Conference on World Wide

Web 7, Brisbane, Australia, pp: 379-388, (1998).

[2] S. Lawrence and C. Giles, “Searching the world wide web,” Science, 280: 98-100, (1998).

[3] M. Berry, S. Dumais, and G. OBrien, “Using linear algebra for intelligent information

retrieval,” SIAM Review, 37: 573-595, (1995).

[4] G. W. Furnas, T. K. Landauer, L.M. Gomez, and S.T. Dumais, “The vocabulary problem

in human-system communication,” Communications of the ACM, 30: 964-971, (1987).

[5] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and R. Harshman, “Indexing by

latent semantic analysis,” Journal of the Society for Information Science, 41: 391-407,

(1990).

[6] T. Jaber, A. Amira, and P. Milligan, “Tdm modeling and evaluation of different domain

transforms for lsi,” Elsevier Neurocomputing, 72: 2406-2417, (2009).

[7] T. Jaber, A. Amira, and P. Milligan, “Latent semantic indexing using multiresolution

analysis,” International Conference on Pervasive and Embedded Computing and

Communication Systems (PECCS). Algarve, Portugal, (2011).

[8] T. Jaber, A. Amira, and P. Milligan, “Textual noise analysis and removal for effective

search engines,” European Workshop on Visual Information Processing (EUVIP), Paris,

France, pp: 129-133, (2010).

[9] C. Fox, “Lexical analysis and stoplists. in information retrieval – data structures &

algorithm,” Prentice-Hall, pp: 102-130, (1992).

[10] W. B. Frakes, “Stemming algorithms in information retrieval – data structures &

algorithm,” Prentice-Hall, pp: 131-160, (1992).

[11] D. Hull, “Stemming algorithms - a case study for detailed evaluation,” Journal of the

American Society for Information Science, 47: 70-84, (1996).

[12] S. Dumais, “Improving the retrieval of information from external sources,” Behavior

Research Methods, Instruments and Computers, 23: 229-236, (1991).

[13] T. Kolda and D. O’Leary, “A semi-discrete matrix decomposition for latent semantic

indexing in information retrieval,” ACM Transactions on Information Systems, 16: 322-346,

(1998).

[14] E. Hoenkamp, “Unitary operators on the document space source,” Journal of the American

Society for Information Science and Technology, 54: 314-320, (2003).

[15] Cochrane, “Url: http://www.cochrane.org”, (2005).

102 Tareq Jaber

[16] J. Gao and J. Zang, “Clustered svd strategies in latent semantic indexing,” Laboratory for

High Performance Scientific Computing andComputer Simulation University of Kentucky,

(2004).

[17] A. Kontostathis, “Essential dimensions of latent semantic indexing (lsi),” Proceedings of

the 40th Hawaii International Conference on System Sciences-2007, pp: 73-80, (2007).

[18] T. K. Landauer, D. Laham, and P. Foltz, “Learning human-like knowledge by singular

value decomposition,” Proceedings of the 10th Conference on Advances in Neural

Information Processing Systems, pp: 45-51, (1997).

[19] T. A. Letsche and M. W. Berry, “Large-scale information retrieval with latent semantic

indexing,” Information Sciences: International Journal, 100: 105-137, (1997).

[20] R. Zhao and W. I. Grosky, “Narrowing the semantic gap-improved textbased web

document retrieval using visual features,” IEEE Transactions On Multimedia, 4: 189-200,

(2002).

[21] H. Ito and H. Koshimizu, “Keyword and face image retrieval based on latent semantic

indexing,” IEEE lntemational Conference on Systems, Man and Cybernetics, 1: 358-363,

(2004).

[22] J. Yu, “Singular value decomposition with applications to ir and text clustering,” Technical

report, School of Electronics Engineering and Computer Science Peking University, Beijing,

(2003).

[23] E. R. Jessup and J. H. Martin, “Taking a new look at the latent semantic analysis approach

to information retrieval,” Computational Information Retrieval, pp: 121-144, (2001).

[24] G. Metherall, “Local segmentation of images,” School of Computer Science and Software

Engineering, Monash University. Project URL: http://www.csse.monash.edu.au/hons/

projects/2000/Glenn.Metherall/index.html, (2000).

[25] R. Gonzalez and R. Woods, “Digital image processing,” Second Edition, Addison Wesley,

(2002).

[26] “Cviptools,” Southern Illinois University at Edwardsville URL: http://www.ee.siue.edu/

CVIPtools/index.php, (2008).

[27] T. Jaber, A. Amira, and P. Milligan, “A novel approach for lexical noise analysis and

measurement in intelligent information retrieval,” Proceedings of IEEE International

Conference on Pattern Recognition, ICPR. Hong Kong, 3: 370-373, (2006).

Lexical Noise Analysis and Removal in Intelligent Search Engines 103

������ �	
�� ���	� �� �������� ������ ������� ���	�

 ��� ������	 ���
���

��������	
���� �������	
���������	��� ����	
���� �

���� �
������	
�����	
�����	

�������	 . ������ �	
��
�� �	����� ��� ��)IR(�������� �
 �
	��� ������)LSI (�� �	
��
�� �	����� !�"��� ��#$ ��%��

 &%�� �� ��#	'�
�� �
 �*�+ �
�
�� ,%
�� �� �'#���
�� . -���
 �%	�
�� ����� /������ 0
 �'#��
�� ��	$
�� ,�1 2�3�� ��%����

) ���#	'
�� �	��
4���" �� �5��� !�� �6	$�� 2	#�7�.(��
�
 �� 84�� !��"��� ���
�� �� ���	�7� �9	%�� :���
�� �
��)SVD (

 ����9�
 ��� ���
�
�� ;	<�<� �<	�� =��
%� �
� >���
�
����? ���*���)TDM .(��� ����"
�� 2%����� ������� -�� @�#�

LSI ��9�� ���	
 �� ;	<�<�� ���4A� ���
%�� �B% ���� �
 .
 �� ��
�
�� ;	<�<�� ��<	���� ���
%�� �1 C����� D	�%TDM

 5���� -�� �� !��
��*�#�� � . ��� E��<��� 	�F���� ��	%�� �
��
 ��� ����� �<�+ ������ ,��� &%�� ���	
 TDM . :�	�##�

 �� �#������ �G�"+ TDM :;	���# @�#�� ���� �+ 	�%H$ �
 ����
 ��LSI.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

