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Response of first order systems 

Outline: 

 Definition of first order systems 

 The general form of transfer function of first order systems 

 Response of first order systems to some common forcing functions 

(predict and understand how it responds to an input) 

Time behavior of a system is important.  When you design a system, the time 

behavior may well be the most important aspect of its behavior (How quickly 

a system responds is important) 

What is a first order system? 

It is a system whose dynamic behavior is described by a first order 

differential equation. 

Synonyms for first order systems are first order lag and single exponential 

stage. 

Transfer function 

The transfer function is defined as the ratio of the output and the input in 

the Laplace domain. 

It describes the dynamic characteristics of the system. 

𝐺(𝑠) =  
 𝑜𝑢𝑡𝑝𝑢𝑡

 𝑖𝑛𝑝𝑢𝑡
 

 

General rules to develop a transfer function 

1. Make unsteady state balance (mass, heat or momentum) 

2. Make steady state balance 
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3. Subtract the steady state equation from the unsteady state equation 

(why?) 

4. Transform the resulting equation into the Laplace domain 

5. Rearrange the equation to get the ratio of the (out/in) in one side and 

the other parameters in the other side (the resulting is the transfer 

function) 

Example on first order systems  

A mercury thermometer: consider the mercury thermometer shown in the 

figure 

 

Cross view of thermometer 

Basic assumptions: 

1. All the resistance to heat transfer resides in the film surrounding the 

bulb (conduction resistance is neglected). 

2. All the thermal capacity is in the mercury. 

3. The mercury assumes a uniform temperature throughout. 

4. The  glass  wall  containing  the  mercury  does  not  expand  or  contract  

during  the transient response.  

5. Constant properties.  

To develop the transfer function of the thermometer we will follow the 

steps mentioned earlier; 

1. Unsteady state heat balance 

Input – Output = Rate of change 



3 
 

ℎ𝐴(𝑥 − 𝑦) − 0 = 𝑚𝑐𝑝
𝑑𝑦

𝑑𝑡
 

 

Temperature profile in the thermometer 

 

Note: output from the thermometer = 0.0 (mercury is expanded when 

heated) 

2. Steady state balance 

ℎ𝐴(𝑥𝑠 − 𝑦𝑠) = 0 

3. Unsteady state balance – steady state balance 

ℎ𝐴[(𝑥 − 𝑥𝑠) − (𝑦 − 𝑦𝑠)] =  𝑚𝑐𝑝
𝑑(𝑦 − 𝑦𝑠)

𝑑𝑡
 

Note: 
𝑑(𝑦−𝑦𝑠)

𝑑𝑡
= 

𝑑𝑦

𝑑𝑡
 

Write the above equation in terms of the deviation variables 

ℎ𝐴[𝑋 − 𝑌] =  𝑚𝑐𝑝
𝑑𝑌

𝑑𝑡
 

[𝑋 − 𝑌] =  
𝑚𝑐𝑝

ℎ𝐴

𝑑𝑌

𝑑𝑡
 

4. Laplace transform 
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[𝑋(𝑠) − 𝑌(𝑠)] =  
𝑚𝑐𝑝

ℎ𝐴
𝑠𝑌(𝑠) 

5. Output/Input 
𝑌(𝑠)

𝑋(𝑠)
=

1
𝑚𝑐𝑝
ℎ𝐴

𝑠 + 1
 

The parameter 
𝑚𝑐𝑝

ℎ𝐴
 has the units of time and is called the time 

constant of the system and is denoted by 𝜏 
𝑌(𝑠)

𝑋(𝑠)
=

1

𝜏𝑠 + 1
 

Note: 

 The time constant is a measure to how fast be the system 

response. The smaller is the time constant, the more responsive is 

the system. 

 𝜏 also called “dead time” or “dynamic lag” 

Standard form of first order transfer functions 

𝑌(𝑠)

𝑋(𝑠)
=

𝐾

𝜏𝑠 + 1
 

 The important characteristics of the standard form are as follows: 

 The denominator must be of the form 𝜏𝑠 + 1  

 The coefficient of the s term in the denominator is the system time 

constant 𝜏 

 The numerator is the steady-state gain K.   

Example 1: A first order system has a transfer function  
𝑌(𝑠)

𝑋(𝑠)
=

2

𝑠+
1

3

 . Identify 

the time constant and the steady state gain. 

Properties of transfer functions: 

 Superposition is applicable 

  

𝐺(𝑠) =  
𝑌(𝑠)

𝑋(𝑠)
 

If 𝑋(𝑠) = 𝑎1𝑋1(𝑠) + 𝑎2𝑋2(𝑠) 
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𝑌(𝑠) =  𝐺(𝑠) 𝑋(𝑠) 

𝑌(𝑠) = 𝑎1𝐺(𝑠)𝑋1(𝑠) + 𝑎2𝐺(𝑠)𝑋2(𝑠) 

= 𝑎1𝑌1(𝑠) + 𝑎2𝐺(𝑠)𝑌2(𝑠) 

i.e. The output of multi-input is the sum of the output to the individual 

inputs. 

Response of first order systems to some common forcing functions 

1. Step response (𝑋(𝑡) = 𝐴 𝑢(𝑡); 𝑌(𝑡) =? ? ) 

Required: 

 Sketch of the input and the corresponding output 

 General equation of the output 

 The ultimate and maximum value of the output and their corresponding 

time. 

To get the response to any input follow the following steps (scheme) 

[𝐼𝑛𝑝𝑢𝑡] 𝑋(𝑡)
ℒ𝑇
→ 𝑋(𝑠)

𝑇𝐹
→ 𝑌(𝑠)

ℒ−1

→ 𝑌(𝑡)[𝑂𝑢𝑡𝑝𝑢𝑡] 

𝑌(𝑠)

𝑋(𝑠)
=

𝐾

𝜏𝑠 + 1
 

𝑋(𝑠) =
𝐴

𝑠
 

𝑌(𝑠) =
𝐴

𝑠

𝐾

𝜏𝑠 + 1
=
𝐶1
𝑠
+

𝐶2
𝜏𝑠 + 1

 

Solving by partial fractions 

𝑌(𝑠) =
𝐾𝐴

𝑠
−
𝐾𝐴

𝑠 +
1
𝜏

 

𝑌(𝑡) = 𝐾𝐴[1 − 𝑒−
𝑡
𝜏] 

The above equation is the general form of first order system response to 

step change. 
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Input X(t) Output Y(t) 
𝑋(𝑡) = 𝐴 𝑢(𝑡) 

𝑌(𝑡) = 𝐾𝐴[1 − 𝑒−
𝑡
𝜏] 

 

 
Ultimate value = KA 

Maximum value = KA 

 

Characteristics of step response 

A. The value of the output reaches 63.2% of its ultimate value after 𝑡 =  𝜏  

B. If the initial rate of change is maintained the response will be completed 

after  𝑡 =  𝜏   

C. The response is completed after 𝑡 =  5𝜏   

D. The speed of the response of a first-order system is determined by the 

time constant for the system. as  t  increases,  it  takes  longer  for  the  

system  to  respond  to  the  step disturbance. 

 



7 
 

Effect of the time constant on the step response of a first order system 

2. Impulse response (𝑋(𝑡) = 𝐴 𝛿(𝑡); 𝑌(𝑡) =? ? ) 
𝑌(𝑠)

𝑋(𝑠)
=

𝐾

𝜏𝑠 + 1
 

𝑋(𝑠) = 𝐴 

𝑌(𝑠) =
𝐾𝐴

𝜏𝑠 + 1
=
𝐾𝐴/𝜏

𝑠 +
1
𝜏

 

𝑌(𝑡) =
𝐾𝐴

𝜏
 𝑒−

𝑡
𝜏 

Input X(t) Output Y(t) 
𝑋(𝑡) = 𝐴 𝛿(𝑡) 

𝑌(𝑡) =
𝐾𝐴

𝜏
 𝑒−

𝑡
𝜏 

  
The response rises immediately and 

then decays exponentially. 

Ultimate value = 0 

Maximum value = 
𝐾𝐴

𝜏
 at t = 0 

 

3. Pulse response 

𝑋(𝑡) =  {
𝐻     0 < 𝑡 < 𝑇
0     𝑇 < 𝑡       

 

Write the function X(t) in terms of the unit step function 

𝑋(𝑡) = 𝐻 𝑢(𝑡) − 𝐻𝑢(𝑡 − 𝑇) 

𝑋(𝑠) =
𝐻

𝑠
−
𝐻

𝑠
𝑒−𝑇𝑠 

𝑌(𝑠) = (
𝐻

𝑠
−
𝐻

𝑠
𝑒−𝑇𝑠)

𝐾

𝜏𝑠 + 1
 

𝑌(𝑠) =
𝐻

𝑠

𝐾

𝜏𝑠 + 1
−
𝐻

𝑠

𝐾

𝜏𝑠 + 1
𝑒−𝑇𝑠 
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𝑌(𝑡) = 𝐾𝐻 [1 − 𝑒−
𝑡
𝜏] 𝑢(𝑡) − 𝐾𝐻 [1 − 𝑒−

(𝑡−𝑇)
𝜏 ] 𝑢(𝑡 − 𝑇) 

 

Input X(t) Output Y(t) 
𝑋(𝑡) = 𝐴 𝛿(𝑡) 

𝑌(𝑡) =
𝐾𝐴

𝜏
 𝑒−

𝑡
𝜏 

  
Ultimate value = 0 

Maximum value = 𝐾𝐻 [1 − 𝑒−
𝑇

𝜏] at t =T 

 

4. Ramp response (𝑋(𝑡) = 𝐴𝑡 𝑢(𝑡); 𝑌(𝑡) =? ? ) where A is the slope of the 

ramp function 

𝑌(𝑠)

𝑋(𝑠)
=

𝐾

𝜏𝑠 + 1
 

𝑋(𝑠) =
𝐴

𝑠2
 

𝑌(𝑠) =
𝐾𝐴

𝑠2(𝜏𝑠 + 1)
=

𝐾𝐴
𝜏

𝑠2 (𝑠 +
1
𝜏)
=
𝐶1
𝑠2
+
𝐶2
𝑠
+

𝐶3

(𝑠 +
1
𝜏)

 

Solving by partial fractions 

 𝐶1 = 𝐾𝐴  𝐶2 = −𝐾𝐴𝜏  𝐶3 = 𝐾𝐴𝜏 
 

𝑌(𝑠) =
𝐾𝐴

𝑠2
−
𝐾𝐴𝜏

𝑠
+

𝐾𝐴𝜏

(𝑠 +
1
𝜏)
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𝑌(𝑡) = 𝐾𝐴𝑡 − 𝐾𝐴𝜏 + 𝐾𝐴𝜏 𝑒−
𝑡
𝜏 

𝑌(𝑡) = 𝐾𝐴𝑡 − 𝐾𝐴𝜏 (1 −  𝑒−
𝑡
𝜏) 

Input X(t) Output Y(t) 
𝑋(𝑡) = 𝐴𝑡 𝑢(𝑡) 

𝑌(𝑡) = 𝐾𝐴𝑡 − 𝐾𝐴𝜏 (1 −  𝑒−
𝑡
𝜏) 

 

 

 

 
Ultimate value = ∞ 

Maximum value = ∞ 

 

Physical examples of first order systems 

The objective of this part is to develop the transfer function of some first 

order systems and to confirm that the time constant depends on the system 

parameters. 

1. Liquid level 

A tank of uniform cross sectional area A, the inlet flow is q and the outlet is 

𝑞𝑜. The liquid level in the tank is h and the tank has a linear flow resistance 

at the outlet (e.g. valve). (qo =
h

R
) 
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Liquid level system 

Required: the transfer function 
𝐻(𝑠)

𝑄(𝑠)
 and  

𝑄𝑜(𝑠)

𝑄(𝑠)
 (note: this system is called 

single input multi-output SIMO) 

Basic assumptions: 

a) Constant density b) Linear resistance c) Constant cross sectional area 

 

i. Unsteady state mass balance 

𝜌𝑞 − 𝜌𝑞𝑜 =
𝑑(𝜌𝑉)

𝑑𝑡
=
𝑑(𝜌𝐴ℎ)

𝑑𝑡
 

𝑞 − 𝑞𝑜 = 𝐴
𝑑ℎ

𝑑𝑡
 

ii. Steady state mass balance 

𝑞𝑠 − 𝑞𝑜𝑠 = 0 

iii. Subtract the steady state equation from the unsteady state one 

𝑄 − 𝑄𝑜 = 𝐴
𝑑𝐻

𝑑𝑡
 

Where: 

𝑄 = 𝑞 − 𝑞𝑠 𝑄𝑜 = 𝑞𝑜 − 𝑞𝑜𝑠 𝐻 = ℎ − ℎ𝑠 

The above parameters are called deviation variables. 

iv. Taking the transform of the resulting equation 

𝑄(𝑠) − 𝑄𝑜(𝑠) = 𝐴𝑠𝐻(𝑠) 

Qo =
H

R
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𝑄(𝑠) −
H(s)

R
= 𝐴𝑠𝐻(𝑠) 

H(s)

𝑄(𝑠)
=

𝑅

𝐴𝑅𝑠 + 1
 

H(s)

𝑄(𝑠)
=

𝑅

𝜏𝑠 + 1
 

𝜏 = 𝐴𝑅 

Note: tanks having small cross sectional area are more responsive. 

Qo(s)

𝑄(𝑠)
=

1

𝜏𝑠 + 1
 

N.B: the steady state gain depends on the input and the output in the last 

transfer function it is dimensionless because the input and the output have 

the same units. 

The steady state gain is a conversion factor that relates the input and the 

output at steady state. 

2. Liquid level with constant flow outlet 

 

Liquid level with constant flow outlet 

In this example the resistance R is replace by a constant flow pump (𝑞𝑜(𝑡) =

𝑞𝑜,𝑠) 

Required: the transfer function 
H(s)

𝑄(𝑠)
 

Basic assumptions: 

d) Constant density e) Constant flow outlet f) Constant cross sectional 
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(𝑞𝑜(𝑡) = 𝑞𝑜,𝑠) area 

 

i. Unsteady state mass balance 

𝑞 − 𝑞𝑜 = 𝐴
𝑑ℎ

𝑑𝑡
 

ii. Steady state mass balance 

𝑞𝑠 − 𝑞𝑜𝑠 = 0 

iii. Subtract the steady state equation from the unsteady state one 

𝑄 = 𝐴
𝑑𝐻

𝑑𝑡
 

Where: 𝑞𝑜 − 𝑞𝑜𝑠 = 0 

iv. Taking the transform of the resulting equation 

𝑄(𝑠) = 𝐴𝑠𝐻(𝑠) 

H(s)

𝑄(𝑠)
=
1

𝐴𝑠
 

H(s) =
𝑄(𝑠)

𝐴𝑠
 

Note: Inverse of the above equation yields:  

H(t) =
1

𝐴
∫ 𝑄(𝑡)𝑑𝑡
𝑡

0

 

Ex: Find the response of this system to a unit step change in input 

𝑄(𝑡) = 1 𝑢(𝑡) 

𝑄(𝑠) =
1

𝑠
 

𝐻(𝑠) =
1

𝐴𝑠2
 

𝐻(𝑡) =
1

𝐴
𝑡 
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 The response is a ramp function that grows with time without limit. Such 

a system that grows without limit for a sustained change in input is said 

to have non-regulation. 

 Systems that have a limited change in output for a sustained change in 

input are said to have regulation. 

 

 

Important note: 

The transfer function for the liquid-level system with constant outlet flow 

given can be considered as a special case of Eq. 
H(s)

𝑄(𝑠)
=

𝑅

𝐴𝑅𝑠+1
 as  𝑅 → ∞    

𝑙𝑖𝑚𝑅→∞ (
𝑅

𝐴𝑅𝑠 + 1
) =

1

𝐴𝑠
 

3. Mixing process 

 

Mixing process 

Description: 

Consider the mixing process shown in the above figure in which a stream of 

solution containing dissolved salt flows at a constant volumetric flow rate (q) 

into a tank of constant holdup volume V.  The concentration of the salt in the 

entering stream x (mass of salt/volume) varies with time. It is desired to 

determine the transfer function relating the outlet concentration y to the 

inlet concentration x (
𝑌(𝑠)

𝑋(𝑠)
). 

Basic assumptions: 
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 Constant density  Constant holdup 

 Perfect mixing (outlet concentration equal 

the concentration inside the tank 

 

 

i. Unsteady state mass balance 

𝑞𝑥 − 𝑞𝑦 =
𝑑(𝑉𝑦)

𝑑𝑡
= 𝑉

𝑑𝑦

𝑑𝑡
 

 

ii. Steady state mass balance 

𝑞𝑥𝑠 − 𝑞𝑦𝑠 = 0 

iii. Subtract the steady state equation from the unsteady state one 

𝑞𝑋(𝑡) − 𝑞𝑌(𝑡) = 𝑉
𝑑𝑌

𝑑𝑡
 

iv. Taking the transform of the resulting equation 

𝑞𝑋(𝑠) − 𝑞𝑌(𝑠) = 𝑉𝑠𝑌(𝑠) 

 
𝑌(𝑠)

𝑋(𝑠)
=

1

𝑉
𝑞 𝑠 + 1

 

𝜏 =
𝑉

𝑞
 

𝑌(𝑠)

𝑋(𝑠)
=

1

𝜏𝑠 + 1
 

Note: the steady state gain is dimensionless. 

4. Heating Process 
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Heating process 

A stream at temperature 𝑇𝑖 is fed to the tank. Heat is added to the tank by 

means of an electric heater.  The tank is well mixed, and the temperature of 

the exiting stream is T.  The flow rate to the tank is constant at w lb/h. 

Required: the transfer function relating the change in the inlet temperature 

and the change in q to the change in the outlet temperature 

i. Unsteady state mass balance 

𝑤𝑐𝑝(𝑇𝑖 − 𝑇𝑟𝑒𝑓) + 𝑞 − 𝑤𝑐𝑝(𝑇 − 𝑇𝑟𝑒𝑓) =
𝑑 𝜌𝑉𝑐𝑝(𝑇 − 𝑇𝑟𝑒𝑓)

𝑑𝑡
= 𝜌𝑉𝑐𝑝

𝑑𝑇

𝑑𝑡
 

ii. Steady state mass balance 

𝑤𝑐𝑝(𝑇𝑖𝑠 − 𝑇𝑟𝑒𝑓) + 𝑞𝑠 − 𝑤𝑐𝑝(𝑇𝑠 − 𝑇𝑟𝑒𝑓) = 0 

iii. Subtract the steady state equation from the unsteady state one 

𝑤𝑐𝑝(𝑇̅𝑖 − 𝑇̅) + 𝑄 = 𝜌𝑉𝑐𝑝
𝑑𝑇̅

𝑑𝑡
 

Where: 

𝑇̅𝑖 = 𝑇𝑖 − 𝑇𝑖,𝑠 𝑇̅ = 𝑇 − 𝑇𝑠 𝑄 = 𝑞 − 𝑞𝑠 

 

This system has two inputs (change in inlet temperature and change in q) 

We will fix one input and account for the effect of the other one: 
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First: Assume q is constant: 

∴ 𝑤𝑐𝑝(𝑇̅𝑖 − 𝑇̅) = 𝜌𝑉𝑐𝑝
𝑑𝑇̅

𝑑𝑡
 

iv. Taking the transform of the resulting equation 

𝑤[𝑇̅𝑖(𝑠) − 𝑇̅(𝑠)] = 𝜌𝑉𝑠𝑇̅(𝑠) 

𝑇̅𝑖(𝑠) = 𝑇̅(𝑠) [
𝜌𝑉

𝑤
𝑠 + 1] 

 

𝑇̅(𝑠)

𝑇̅𝑖(𝑠)
=

1

𝜌𝑉
𝑤 𝑠 + 1

 

𝜏 =
𝜌𝑉

𝑤
 

Effect of q: Assume 𝑇𝑖 is constant: 

𝑤𝑐𝑝𝑇̅ + 𝑄 = 𝜌𝑉𝑐𝑝
𝑑𝑇̅

𝑑𝑡
 

Taking the transform of the resulting equation 

𝑄(𝑠)

𝑤𝑐𝑝
= 𝑇̅(𝑠) [

𝜌𝑉

𝑤
𝑠 + 1] 

𝑇̅(𝑠)

𝑄(𝑠)
=

1
𝑤𝑐𝑝

𝜌𝑉
𝑤 𝑠 + 1

 

 

𝜏 =
𝜌𝑉

𝑤
 

This heating process can be represented by the following equation: 

(𝑇̅𝑖(𝑠) +
𝑄(𝑠)

𝑤𝑐𝑝
) [

1

𝜏𝑠 + 1
] = 𝑇̅(𝑠) 

The block diagram for this process is:  
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Important note: 

Regardless the type of input, the time constant is the same (the 

denominator of the transfer function is constant for all inputs, but the 

numerator depends on the relation between the input and the output). 

 

 

Linearization 

What is linearization? 

Linearization is approximation of nonlinear equation in a linear form. 

What is a linear system? 

Linear system means that the dynamic behavior of the system is described 

by a linear differential equation. 

What is the importance of linearization? 

Most physical systems of practical importance are nonlinear. 

Characterization of a dynamic system by a transfer function can be done 

only for linear systems (those described by linear differential equations) 

Techniques for linearization (Taylor series expansion) 

Assume a nonlinear function 𝑦 = 𝑐𝑥2  
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By  means  of  a  Taylor  series  expansion,  the  function may  be  expanded 

around the steady-state value 𝑥𝑠. 

 


