Response of first order systems
Outline:

e Definition of first order systems

e The general form of ftransfer function of first order systems

e Response of first order systems fo some common forcing functions
(predict and understand how it responds to an input)

Time behavior of a system is important. When you design a system, the time
behavior may well be the most important aspect of its behavior (How quickly
a system responds is important)

What is a first order system?

It is a system whose dynamic behavior is described by a first order
differential equation.

Synonyms for first order systems are first order lag and single exponential
stage.

Transfer function

The transfer function is defined as the ratio of the output and the input in
the Laplace domain.

It describes the dynamic characteristics of the system.

General rules to develop a transfer function

1. Make unsteady state balance (mass, heat or momentum)
2. Make steady state balance



3. Subtract the steady state equation from the unsteady state equation
(why?)

4. Transform the resulting equation into the Laplace domain

5. Rearrange the equation to get the ratio of the (out/in) in one side and
the other parameters in the other side (the resulting is the fransfer
function)

Example on first order systems

A mercury thermometer: consider the mercury thermometer shown in the
figure

Fluid

¥ = thermometer
reading

x = fluid temperature

Mercury \@’—— Gilass wall

Cross view of thermometer

Basic assumptions:

1. All the resistance fo heat transfer resides in the film surrounding the
bulb (conduction resistance is neglected).

2. All the thermal capacity is in the mercury.

3. The mercury assumes a uniform temperature throughout.

4. The glass wall containing the mercury does not expand or contract
during the transient response.

5. Constant properties.

To develop the transfer function of the thermometer we will follow the
steps mentioned earlier;

1. Unsteady state heat balance
Input - Output = Rate of change
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d
hA(x—y)—0=mcpd—3t]

Glass wall
resistance : Glass wall

Mercury

Mercury |
Film Film
resistances resistance
——— %_H
Resistance to heat transfer All resistance
distributed throughout the to heat transfer lumped
system in the fluid
Actual remperature profile Lumped temperature profile

Temperature profile in the thermometer

Note: output from the thermometer = 0.0 (mercury is expanded when
heated)

2. Steady state balance
hA(xs —y5) =0
3. Unsteady state balance - steady state balance
d(y = ¥s)
hA[(x — x5) — (¥ — )] = meTS
LAly-ys) _ dy
Note: =0~ =&

Write the above equation in terms of the deviation variables

hA[X —Y] = ay
mc, T
_megy ay

X ] hA dt

4. Laplace transform



5.

me,
[X(s) = Y(s)] = h—ASY(S)

Output/Input
Y(s) 1

X(s) ™%
A s+1

The parameter % has the units of time and is called the time

constant of the system and is denoted by
Y(s) 1
X(s) 1s+1

Note:

> The time constant is a measure to how fast be the system
response. The smaller is the time constant, the more responsive is
the system.

> 7 also called "dead time" or "dynamic lag”

Standard form of first order transfer functions

Y(s) K
X(s) ts+1
The important characteristics of the standard form are as follows:

> The denominator must be of the form s + 1
» The coefficient of the s ferm in the denominator is the system time
constant
» The numerator is the steady-state gain K.
Example 1: A first order system has a transfer function % = ﬁ . Identify
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the time constant and the steady state gain.

Properties of transfer functions:

> Superposition is applicable

If X(s) = a; X,(s) + a,X,(s)



Y(s) = G(s) X(s)
Y(s) = a,G(s)X1(s) + ayG(s)X5(s)
= a,Y1(s) + a,G(s)Y,(s)

i.,e. The output of multi-input is the sum of the output to the individual
inputs.

Response of first order systems to some common forcing functions

1. Step response (X(t) =Au(t);Y(t) =??)

Required:

> Sketch of the input and the corresponding output

> General equation of the output

> The ultimate and maximum value of the output and their corresponding
time.

To get the response to any input follow the following steps (scheme)

[nput] X(6) 5 X(s) > ¥(s) 5 ¥ () [Output]

Y(s) K
m: s+1

A

X(s) =<

A K C; C,
Y = — =
(5) sts+1 s 1s+1

Solving by partial fractions

Y(S) =T_

Y(t) = KA[1 — e7]

The above equation is the general form of first order system response to
step change.



Input X(1)

Output Y(1)
t

X(t) =Au(t)

Y(t) = KA[1 — e 7]
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Characteristics of step response

The value of the output reaches 63.2% of its ultimate value after t = 7
If the initial rate of change is maintained the response will be completed

A.
B.
after t=1
C. The response is completed after t = 5t
D.

time constant for the system. as
system fo respond to the step

The speed of the response of a first-order system is determined by the
t increases, it takes longer for the

disturbance.

increasing 7
slows the response
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Effect of the time constant on the step response of a first order system

2. Impulse response (X(t) = A6(t);Y(t) =77)

Y(s) K
m CTs+1
X(s)=A
_ KA KA/t
Y(S)_Ts+1_s+%
YO = g ot
Input X(1) Output Y(1)
X)) =A6() Y(t) = KA e_g
T
X(t) Y(©) ,
i .t
0 - t

The response rises immediately and
then decays exponentially.

Ultimate value = 0

Maximum value = KTA att=0

3. Pulse response

H 0<t<T

X = {0 T <t

Write the function X(t) in terms of the unit step function

X(t) =Hu(t)—Hu(t—T)

H H
X(s)=———e7Ts
s s

H K

Y(s) = (E——e_”)
s S s+ 1
H K H K

— - e—Ts
sts+1 sts+1

Y(s) =




Y(t) =KH [1 - e_%] u(t) — KH [1 - e_@] u(t—-"T)

Input X(1) Output Y(t)
X()=A6() Y(t) = KA e_g
T
X(t) 4 Yot
|
o I
|
>t '
T T
Ultimate value = 0
T
Maximum value = KH [1 — e‘?] att =T

4. Ramp response (X(t) = Atu(t);Y(t) =??) where A is the slope of the
ramp function

Y(s) K
X(s) ts+1
A
X(S) = S_2
KA k4 ¢; C C
Y(s) == =Tt 42,
s?(zs+1) 1y sz s 1
(s +2) (s+2)
Solving by partial fractions
e (;=KA o (,=-KAt o (3 =KAt




t
Y(t) = KAt — KAt + KAte 7

t
Y(t) = KAt — KAt (1 - e_?>

Input X(t) Output Y(1)

X() = At u(t) Y(t) = KAt — KAt (1 - e_§>
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Physical examples of first order systems

The objective of this part is to develop the transfer function of some first
order systems and to confirm that the time constant depends on the system
parameters.

1. Liquid level

A tank of uniform cross sectional area A, the inlet flow is q and the outlet is
do. The liquid level in the tank is h and the tank has a linear flow resistance

at the outlet (e.g. valve). (qo = E)




X Glf)

Liquid level system

Required: the transfer function % and %OT(:)) (note: this system is called

single input multi-output SIMO)
Basic assumptions:

a) Constant density b) Linear resistance c¢) Constant cross sectional area

i. Unsteady state mass balance

B _dlpV) _ d(pAh)

_,dn
q qO - dt

ii. Steady state mass balance
s — 4o, = 0

iii.  Subtract the steady state equation from the unsteady state one

_AdH

Q QO_ dt

Where:

‘ Q=q9—gs ‘ Qo:CIo_qos ‘ H=h-h

The above parameters are called deviation variables.

iv.  Taking the tfransform of the resulting equation
Q(s) — Qo(s) = AsH(s)

Qozﬁ
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H(s)
Q(s) ——x— = AsH(s)

H(s) R

Q(s) ARs+1

H(s) R

Q(s) tws+1
T = AR

Note: tanks having small cross sectional area are more responsive.

Qs 1
Q(s) 1s+1

N.B: the steady state gain depends on the input and the output in the last
transfer function it is dimensionless because the input and the output have
the same units.

The steady state gain is a conversion factor that relates the input and the
output at steady state.

2. Liquid level with constant flow outlet

qif) —*

e

g.. {f, = Constant

Liquid level with constant flow outlet

In this example the resistance R is replace by a constant flow pump (g,(t) =
Qo,s)

Required: the fransfer function %

Basic assumptions:

d) Constant density e) Constant flow outlet f) Constant cross sectional
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(QO t) = QO,s) area

i. Unsteady state mass balance

_dh
q qO - dt
ii. Steady state mass balance
s — qos = 0

iii.  Subtract the steady state equation from the unsteady state one

_ 9H
Q= dt

Where: g, — q,, =0

iv.  Taking the tfransform of the resulting equation
Q(s) = AsH(s)

H(s) 1
Q(s)  As
H@)zgg)

Note: Inverse of the above equation yields:
1 t
H(t) = —f Q(t)dt
A 0

Ex: Find the response of this system to a unit step change in input

Q) =1u(®)
_ 1

Q(s) =3
1

H(S) = F
_ 1

H® =4t
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> The response is a ramp function that grows with time without limit. Such
a system that grows without limit for a sustained change in input is said
to have non-regulation.

> Systems that have a limited change in output for a sustained change in
input are said to have regulation.

Important note:

The transfer function for the liquid-level system with constant outlet flow

given can be considered as a special case of Eq. H® _ _R

= as R - o
Q(s) ARs+1

timseen (35 57) = 7
"Mroe \ARs + 1

~ A4s

3. Mixing process

i

Mixing process
Description:

Consider the mixing process shown in the above figure in which a stream of
solution containing dissolved salt flows at a constant volumetric flow rate (q)
into a tank of constant holdup volume V. The concentration of the salt in the

entering stream x (mass of salt/volume) varies with time. It is desired to
determine the transfer function relating the outlet concentration y fo the

inlet concentration x (%)

Basic assumptions:
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> Constant density > Constant holdup
> Perfect mixing (outlet concentration equal
the concentration inside the tank

i. Unsteady state mass balance

‘— v = d(vy) _ v dy
x4y dt dt
ii. Steady state mass balance
qxs —qYs =0

iii.  Subtract the steady state equation from the unsteady state one

X(t Y(t) = VdY
qX(t) —q¥ (O =V
iv.  Taking the tfransform of the resulting equation

qX(s) — q¥(s) = Vs¥Y(s)

Y(is) 1
X(s) %s+1

%4

T =—

q

Y(s) 1
m_15+1

Note: the steady state gain is dimensionless.

4. Heating Process
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Steam or
electricity

Y

w, T
Heating process
A stream at temperature T; is fed to the tank. Heat is added to the tank by

means of an electric heater. The tank is well mixed, and the temperature of
the exiting stream is T. The flow rate to the tank is constant at w Ib/h.

Required: the transfer function relating the change in the inlet femperature
and the change in q to the change in the outlet temperature
i. Unsteady state mass balance

d pVe,(T — Trep) dT
ch(Ti - Tref) +q— ch(T — Tref) = L i L = chpE

ii. Steady state mass balance
ch(TiS — Tref) +qs — ch(TS — Tref) =0
iii.  Subtract the steady state equation from the unsteady state one

_ dT
we,(T; —T)+Q = chpE

‘ 7_11':Ti_Ti,s ‘ 7_TZT_TS ‘ Q=q9—qs

This system has two inputs (change in inlet temperature and change in q)

We will fix one input and account for the effect of the other one:
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First: Assume q is constant:
_ aT
~wep(T; —T) = pVc, I

iv.  Taking the transform of the resulting equation

w[T;(s) = T(s)] = pVsT(s)

Ti(s) = T(s) [%s + 1]

T(s) 1
Ti(s) %s +1
pV
T=—
w

Effect of q: Assume T; is constant:

_ dT
we, T+ Q = chpE

Taking the transform of the resulting equation

Qs)  ~ [PV
we, =T(s) [WS + 1]
1
T(s) _ wey

JON %s+1

_ov
_W

T

This heating process can be represented by the following equation:

(70 +22) 5] - 7o

WCp Ts

The block diagram for this process is:
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Q(S)l

1
_ 1 7
Ti(s) _tbg_’ [rs +1 Jﬁ)

Important note:

Regardless the type of input, the time constant is the same (the
denominator of the transfer function is constant for all inputs, but the
numerator depends on the relation between the input and the output).

Linearization

What is linearization?

Linearization is approximation of nonlinear equation in a linear form.
What is a linear system?

Linear system means that the dynamic behavior of the system is described
by a linear differential equation.

What is the importance of linearization?

Most physical systems of practical importance are nonlinear.
Characterization of a dynamic system by a transfer function can be done
only for linear systems (those described by linear differential equations)

Techniques for linearization (Taylor series expansion)

Assume a honlinear function y = cx?

17



By means of a Taylor series expansion, the function may be expanded
around the steady-state value x;.
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