
D I M E N S I O N A L  A N A LY S I S
A N D  M O D E L I N G

I
n this chapter, we first review the concepts of dimensions and units. We

then review the fundamental principle of dimensional homogeneity, and

show how it is applied to equations in order to nondimensionalize them

and to identify dimensionless groups. We discuss the concept of similarity

between a model and a prototype. We also describe a powerful tool for engi-

neers and scientists called dimensional analysis, in which the combination

of dimensional variables, nondimensional variables, and dimensional con-

stants into nondimensional parameters reduces the number of necessary

independent parameters in a problem. We present a step-by-step method for

obtaining these nondimensional parameters, called the method of repeating

variables, which is based solely on the dimensions of the variables and con-

stants. Finally, we apply this technique to several practical problems to illus-

trate both its utility and its limitations.
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CHAPTER

7
OBJECTIVES

When you finish reading this chapter, you

should be able to

� Develop a better understanding

of dimensions, units, and

dimensional homogeneity of

equations

� Understand the numerous

benefits of dimensional analysis

� Know how to use the method of

repeating variables to identify

nondimensional parameters

� Understand the concept of

dynamic similarity and how to

apply it to experimental

modeling
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EXAMPLE 7–1 Primary Dimensions of Surface Tension

An engineer is studying how some insects are able to walk on water (Fig.

7–2). A fluid property of importance in this problem is surface tension (ss),

which has dimensions of force per unit length. Write the dimensions of sur-

face tension in terms of primary dimensions.

SOLUTION The primary dimensions of surface tension are to be determined.

Analysis From Eq. 7–1, force has dimensions of mass times acceleration, or

{mL/t2}. Thus,

Dimensions of surface tension: (1)

Discussion The usefulness of expressing the dimensions of a variable or

constant in terms of primary dimensions will become clearer in the 

discussion of the method of repeating variables in Section 7–4.

{ss} � e Force

Length
f � em � L/t2

L
f � {m/t2}

7–1 � DIMENSIONS AND UNITS

A dimension is a measure of a physical quantity (without numerical val-

ues), while a unit is a way to assign a number to that dimension. For exam-

ple, length is a dimension that is measured in units such as microns (�m),

feet (ft), centimeters (cm), meters (m), kilometers (km), etc. (Fig. 7–1).

There are seven primary dimensions (also called fundamental or basic

dimensions)—mass, length, time, temperature, electric current, amount of

light, and amount of matter.

All nonprimary dimensions can be formed by some combination of the seven
primary dimensions.

For example, force has the same dimensions as mass times acceleration (by

Newton’s second law). Thus, in terms of primary dimensions,

Dimensions of force: (7–1)

where the brackets indicate “the dimensions of” and the abbreviations are

taken from Table 7–1. You should be aware that some authors prefer force

instead of mass as a primary dimension—we do not follow that practice.

{Force} � eMass 
Length

Time2
f � {mL/t2}
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3.2 cm

1 2 3cm

Length

FIGURE 7–1

A dimension is a measure of a

physical quantity without numerical

values, while a unit is a way to assign

a number to the dimension. For

example, length is a dimension,

but centimeter is a unit.

TABLE 7–1

Primary dimensions and their associated primary SI and English units

Dimension Symbol* SI Unit English Unit

Mass m kg (kilogram) lbm (pound-mass)

Length L m (meter) ft (foot)

Time† t s (second) s (second)

Temperature T K (kelvin) R (rankine)

Electric current I A (ampere) A (ampere)

Amount of light C cd (candela) cd (candela)

Amount of matter N mol (mole) mol (mole)

* We italicize symbols for variables, but not symbols for dimensions.

† Note that some authors use the symbol T for the time dimension and the symbol u for the temperature
dimension. We do not follow this convention to avoid confusion between time and temperature.

FIGURE 7–2

The water strider is an insect that can

walk on water due to surface tension.

© Dennis Drenner/Visuals Unlimited.
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7–2 � DIMENSIONAL HOMOGENEITY

We’ve all heard the old saying, You can’t add apples and oranges (Fig. 7–3).

This is actually a simplified expression of a far more global and fundamen-

tal mathematical law for equations, the law of dimensional homogeneity,

stated as

Every additive term in an equation must have the same dimensions.

Consider, for example, the change in total energy of a simple compressible

closed system from one state and/or time (1) to another (2), as illustrated in

Fig. 7–4. The change in total energy of the system (�E) is given by

Change of total energy of a system: (7–2)

where E has three components: internal energy (U), kinetic energy (KE),

and potential energy (PE). These components can be written in terms of the

system mass (m); measurable quantities and thermodynamic properties at

each of the two states, such as speed (V), elevation (z), and specific internal

energy (u); and the known gravitational acceleration constant (g),

(7–3)

It is straightforward to verify that the left side of Eq. 7–2 and all three addi-

tive terms on the right side of Eq. 7–2 have the same dimensions—energy.

Using the definitions of Eq. 7–3, we write the primary dimensions of each

term,

If at some stage of an analysis we find ourselves in a position in which

two additive terms in an equation have different dimensions, this would be a

clear indication that we have made an error at some earlier stage in the

analysis (Fig. 7–5). In addition to dimensional homogeneity, calculations

are valid only when the units are also homogeneous in each additive term.

For example, units of energy in the above terms may be J, N · m, or kg ·

m2/s2, all of which are equivalent. Suppose, however, that kJ were used in

place of J for one of the terms. This term would be off by a factor of 1000

compared to the other terms. It is wise to write out all units when perform-

ing mathematical calculations in order to avoid such errors.

 {�PE} � eMass 
Length

Time2
 Lengthf      →  {�PE} � {mL2/t2} 

 {�KE} � eMass 
Length2

Time2
 f        →  {�KE} � {mL2/t2} 

 {�U} � eMass 
Energy

Mass
f � {Energy}   →  {�U} � {mL2/t2} 

 {�E} � {Energy} � {Force � Length}  →  {�E} � {mL2/t2}

�U � m(u2 � u1)  �KE �
1

2
 m(V 2

2 � V 2
1)  �PE � mg(z2 � z1)

�E � �U � �KE � �PE

+ + = ?

FIGURE 7–3

You can’t add apples and oranges!

System at state 2

E2 = U2 + KE2 + PE2

System at state 1

E1 = U1 + KE1 + PE1

FIGURE 7–4

Total energy of a system at 

state 1 and at state 2.

CAUTION!
 

WATCHOUT   FOR 

NONHOMOGENEOUS

EQUATIONS

FIGURE 7–5

An equation that is not dimensionally

homogeneous is a sure sign of an error.
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EXAMPLE 7–2 Dimensional Homogeneity 

of the Bernoulli Equation

Probably the most well-known (and most misused) equation in fluid 

mechanics is the Bernoulli equation (Fig. 7–6), discussed in Chap. 5. The

standard form of the Bernoulli equation for incompressible irrotational fluid

flow is

Bernoulli equation: (1)

(a) Verify that each additive term in the Bernoulli equation has the same

dimensions. (b) What are the dimensions of the constant C?

SOLUTION We are to verify that the primary dimensions of each additive 

term in Eq. 1 are the same, and we are to determine the dimensions of 

constant C.

Analysis (a) Each term is written in terms of primary dimensions,

Indeed, all three additive terms have the same dimensions.

(b) From the law of dimensional homogeneity, the constant must have the

same dimensions as the other additive terms in the equation. Thus,

Primary dimensions of the Bernoulli constant:

Discussion If the dimensions of any of the terms were different from the

others, it would indicate that an error was made somewhere in the analysis.

Nondimensionalization of Equations
The law of dimensional homogeneity guarantees that every additive term in

an equation has the same dimensions. It follows that if we divide each term

in the equation by a collection of variables and constants whose product has

those same dimensions, the equation is rendered nondimensional (Fig.

7–7). If, in addition, the nondimensional terms in the equation are of order

unity, the equation is called normalized. Normalization is thus more restric-

tive than nondimensionalization, even though the two terms are sometimes

(incorrectly) used interchangeably.

Each term in a nondimensional equation is dimensionless.

In the process of nondimensionalizing an equation of motion, nondimen-

sional parameters often appear—most of which are named after a notable

scientist or engineer (e.g., the Reynolds number and the Froude number).

This process is referred to by some authors as inspectional analysis.

 {C} � em

t2L
f

{rgz} � e Mass

Volume
 
Length

Time2
 Lengthf � eMass � Length2

Length3 � Time2
f � em

t2L
f

e1
2

 rV 2f � e Mass

Volume
 aLength

Time
b 2f � eMass � Length2

Length3 � Time2
f � em

t2L
f

{P} � {Pressure} � eForce

Area
f � eMass 

Length

Time2
 

1

Length2
f � em

t2L
f

P �
1

2
 rV 2 � rgz � C
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Equation of the Day
 

The Bernoulli equation

P � rV
2 � rgz = C 

1

2

FIGURE 7–6

The Bernoulli equation is a good

example of a dimensionally

homogeneous equation. All additive

terms, including the constant, have 

the same dimensions, namely that 

of pressure. In terms of primary

dimensions, each term has dimensions

{m/(t2L)}.

The nondimensionalized Bernoulli equation

 P      rV2     rgz     C  

P�     2P�     P�      P� 

{1} {1} {1} {1}

+ + =

FIGURE 7–7

A nondimensionalized form of the

Bernoulli equation is formed by

dividing each additive term by a

pressure (here we use P�). Each

resulting term is dimensionless

(dimensions of {1}).
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As a simple example, consider the equation of motion describing the ele-

vation z of an object falling by gravity through a vacuum (no air drag), as in

Fig. 7–8. The initial location of the object is z0 and its initial velocity is w0

in the z-direction. From high school physics,

Equation of motion: (7–4)

Dimensional variables are defined as dimensional quantities that change or

vary in the problem. For the simple differential equation given in Eq. 7–4,

there are two dimensional variables: z (dimension of length) and t (dimen-

sion of time). Nondimensional (or dimensionless) variables are defined as

quantities that change or vary in the problem, but have no dimensions; an

example is angle of rotation, measured in degrees or radians which are

dimensionless units. Gravitational constant g, while dimensional, remains

constant and is called a dimensional constant. Two additional dimensional

constants are relevant to this particular problem, initial location z0 and initial

vertical speed w0. While dimensional constants may change from problem

to problem, they are fixed for a particular problem and are thus distin-

guished from dimensional variables. We use the term parameters for the

combined set of dimensional variables, nondimensional variables, and

dimensional constants in the problem.

Equation 7–4 is easily solved by integrating twice and applying the initial

conditions. The result is an expression for elevation z at any time t:

Dimensional result: (7–5)

The constant and the exponent 2 in Eq. 7–5 are dimensionless results of

the integration. Such constants are called pure constants. Other common

examples of pure constants are p and e.

To nondimensionalize Eq. 7–4, we need to select scaling parameters,

based on the primary dimensions contained in the original equation. In fluid

flow problems there are typically at least three scaling parameters, e.g., L, V,

and P0 � P� (Fig. 7–9), since there are at least three primary dimensions in

the general problem (e.g., mass, length, and time). In the case of the falling

object being discussed here, there are only two primary dimensions, length

and time, and thus we are limited to selecting only two scaling parameters.

We have some options in the selection of the scaling parameters since we

have three available dimensional constants g, z0, and w0. We choose z0 and

w0. You are invited to repeat the analysis with g and z0 and/or with g and w0.

With these two chosen scaling parameters we nondimensionalize the dimen-

sional variables z and t. The first step is to list the primary dimensions of all

dimensional variables and dimensional constants in the problem,

Primary dimensions of all parameters:

The second step is to use our two scaling parameters to nondimensionalize z

and t (by inspection) into nondimensional variables z* and t*,

Nondimensionalized variables: (7–6)z* �
z

z0

  t* �
w0t

z0

{z} � {L}  {t} � {t}  {z0} � {L}  {w0} � {L/t}  {g} � {L/t2}

1
2

z � z0 � w0t �
1

2
 gt 2

d 2z

dt 2
� �g
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w = component of velocity
in the z-direction

z = vertical distance

g = gravitational
acceleration in the
negative z-direction

FIGURE 7–8

Object falling in a vacuum. Vertical

velocity is drawn positively, so w 	 0

for a falling object.

L

P0

V, P
∞

FIGURE 7–9

In a typical fluid flow problem, the

scaling parameters usually include a

characteristic length L, a characteristic

velocity V, and a reference pressure

difference P0 � P�. Other parameters

and fluid properties such as density,

viscosity, and gravitational

acceleration enter the problem 

as well.
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Substitution of Eq. 7–6 into Eq. 7–4 gives

(7–7)

which is the desired nondimensional equation. The grouping of dimensional

constants in Eq. 7–7 is the square of a well-known nondimensional para-

meter or dimensionless group called the Froude number,

Froude number: (7–8)

The Froude number also appears as a nondimensional parameter in free-

surface flows (Chap. 13), and can be thought of as the ratio of inertial force

to gravitational force (Fig. 7–10). You should note that in some older 

textbooks, Fr is defined as the square of the parameter shown in Eq. 7–8.

Substitution of Eq. 7–8 into Eq. 7–7 yields

Nondimensionalized equation of motion: (7–9)

In dimensionless form, only one parameter remains, namely the Froude

number. Equation 7–9 is easily solved by integrating twice and applying the

initial conditions. The result is an expression for dimensionless elevation z*

at any dimensionless time t*:

Nondimensional result: (7–10)

Comparison of Eqs. 7–5 and 7–10 reveals that they are equivalent. In fact,

for practice, substitute Eqs. 7–6 and 7–8 into Eq. 7–5 to verify Eq. 7–10.

It seems that we went through a lot of extra algebra to generate the same

final result. What then is the advantage of nondimensionalizing the equa-

tion? Before answering this question, we note that the advantages are not so

clear in this simple example because we were able to analytically integrate

the differential equation of motion. In more complicated problems, the dif-

ferential equation (or more generally the coupled set of differential equa-

tions) cannot be integrated analytically, and engineers must either integrate

the equations numerically, or design and conduct physical experiments to

obtain the needed results, both of which can incur considerable time and

expense. In such cases, the nondimensional parameters generated by nondi-

mensionalizing the equations are extremely useful and can save much effort

and expense in the long run.

There are two key advantages of nondimensionalization (Fig. 7–11). First,

it increases our insight about the relationships between key parameters.

Equation 7–8 reveals, for example, that doubling w0 has the same effect as

decreasing z0 by a factor of 4. Second, it reduces the number of parameters

in the problem. For example, the original problem contains one dependent

variable, z; one independent variable, t; and three additional dimensional

constants, g, w0, and z0. The nondimensionalized problem contains one

dependent parameter, z*; one independent parameter, t*; and only one

additional parameter, namely the dimensionless Froude number, Fr. The

number of additional parameters has been reduced from three to one!

Example 7–3 further illustrates the advantages of nondimensionalization.

z* � 1 � t* �  
1

2Fr2
 t*2

d 2z*

dt*2
� �

1

Fr2

Fr �
w0

2gz0

d 2z

dt 2
�

d 2(z0z*)

d(z0t*/w0)
2

�
w 2

0

z0

 
d 2z*

dt*2
� �g  →   

w 2
0

gz0

 
d 2z*

dt*2
� �1
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Sluice
gate

y1

V1

2V
y2

FIGURE 7–10

The Froude number is important in

free-surface flows such as flow in

open channels. Shown here is flow

through a sluice gate. The Froude

number upstream of the sluice gate is  

and it is 

downstream of the sluice gate.

Fr2 � V2/1gy2Fr1 � V1/1gy1,

Relationships between key

 parameters in the problem

are identified.

The number of parameters 

in a nondimensionalized 

equation is less than the 

number of parameters in 

the original equation.

FIGURE 7–11

The two key advantages of non-

dimensionalization of an equation.
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EXAMPLE 7–3 Illustration of the Advantages 

of Nondimensionalization

Your little brother’s high school physics class conducts experiments in a

large vertical pipe whose inside is kept under vacuum conditions. The stu-

dents are able to remotely release a steel ball at initial height z0 between 0

and 15 m (measured from the bottom of the pipe), and with initial vertical

speed w0 between 0 and 10 m/s. A computer coupled to a network of photo-

sensors along the pipe enables students to plot the trajectory of the steel

ball (height z plotted as a function of time t) for each test. The students are

unfamiliar with dimensional analysis or nondimensionalization techniques,

and therefore conduct several “brute force” experiments to determine how

the trajectory is affected by initial conditions z0 and w0. First they hold w0

fixed at 4 m/s and conduct experiments at five different values of z0: 3, 6,

9, 12, and 15 m. The experimental results are shown in Fig. 7–12a. Next,

they hold z0 fixed at 10 m and conduct experiments at five different values

of w0: 2, 4, 6, 8, and 10 m/s. These results are shown in Fig. 7–12b. Later

that evening, your brother shows you the data and the trajectory plots and

tells you that they plan to conduct more experiments at different values of z0

and w0. You explain to him that by first nondimensionalizing the data, the

problem can be reduced to just one parameter, and no further experiments

are required. Prepare a nondimensional plot to prove your point and discuss.

SOLUTION A nondimensional plot is to be generated from all the available

trajectory data. Specifically, we are to plot z* as a function of t*.

Assumptions The inside of the pipe is subjected to strong enough vacuum

pressure that aerodynamic drag on the ball is negligible.

Properties The gravitational constant is 9.81 m/s2.

Analysis Equation 7–4 is valid for this problem, as is the nondimensional-

ization that resulted in Eq. 7–9. As previously discussed, this problem com-

bines three of the original dimensional parameters (g, z0, and w0) into one

nondimensional parameter, the Froude number. After converting to the

dimensionless variables of Eq. 7–6, the 10 trajectories of Fig. 7–12a and b

are replotted in dimensionless format in Fig. 7–13. It is clear that all the

trajectories are of the same family, with the Froude number as the only

remaining parameter. Fr2 varies from about 0.041 to about 1.0 in these exper-

iments. If any more experiments are to be conducted, they should include

combinations of z0 and w0 that produce Froude numbers outside of this range.

A large number of additional experiments would be unnecessary, since all the

trajectories would be of the same family as those plotted in Fig. 7–13.

Discussion At low Froude numbers, gravitational forces are much larger than

inertial forces, and the ball falls to the floor in a relatively short time. At large

values of Fr on the other hand, inertial forces dominate initially, and the ball

rises a significant distance before falling; it takes much longer for the ball to

hit the ground. The students are obviously not able to adjust the gravitational

constant, but if they could, the brute force method would require many more

experiments to document the effect of g. If they nondimensionalize first, how-

ever, the dimensionless trajectory plots already obtained and shown in Fig.

7–13 would be valid for any value of g; no further experiments would be

required unless Fr were outside the range of tested values.

If you are still not convinced that nondimensionalizing the equations and the

parameters has many advantages, consider this: In order to reasonably docu-

ment the trajectories of Example 7–3 for a range of all three of the dimensional

275
CHAPTER 7

(b)

z0 = 10 m

z, m

0

0 0.5 1 1.5 2

t, s

2.5 3

2

4

6

8

10

12

14

16

10 m/s

w0 =

8 m/s

6 m/s

4 m/s

2 m/s

FIGURE 7–12

Trajectories of a steel ball falling in 

a vacuum: (a) w0 fixed at 4 m/s, and

(b) z0 fixed at 10 m (Example 7–3). 

Fr2

Fr2 = 1.0

z*

0

0 0.5 1 1.5 2

t*

2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fr2 = 0.041

FIGURE 7–13

Trajectories of a steel ball falling 

in a vacuum. Data of Fig. 7–12a

and b are nondimensionalized and 

combined onto one plot.

(a)

z, m

0

0 0.5 1 1.5 2

t, s

2.5 3

2

4

6

8

10

12

14

16

15 m
z0 =

wo = 4 m/s

12 m

9 m

6 m

3 m
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parameters g, z0, and w0, the brute force method would require several (say a

minimum of four) additional plots like Fig. 7–12a at various values (levels) of

w0, plus several additional sets of such plots for a range of g. A complete data

set for three parameters with five levels of each parameter would require 53 �
125 experiments! Nondimensionalization reduces the number of parameters

from three to one—a total of only 51 � 5 experiments are required for the

same resolution. (For five levels, only five dimensionless trajectories like those

of Fig. 7–13 are required, at carefully chosen values of Fr.)

Another advantage of nondimensionalization is that extrapolation to

untested values of one or more of the dimensional parameters is possible.

For example, the data of Example 7–3 were taken at only one value of grav-

itational acceleration. Suppose you wanted to extrapolate these data to a dif-

ferent value of g. Example 7–4 shows how this is easily accomplished via

the dimensionless data.

EXAMPLE 7–4 Extrapolation of Nondimensionalized Data

The gravitational constant at the surface of the moon is only about one-sixth

of that on earth. An astronaut on the moon throws a baseball at an initial

speed of 21.0 m/s at a 5° angle above the horizon and at 2.0 m above the

moon’s surface (Fig. 7–14). (a) Using the dimensionless data of Example

7–3 shown in Fig. 7–13, predict how long it takes for the baseball to fall to

the ground. (b) Do an exact calculation and compare the result to that of

part (a).

SOLUTION Experimental data obtained on earth are to be used to predict

the time required for a baseball to fall to the ground on the moon.

Assumptions 1 The horizontal velocity of the baseball is irrelevant. 2 The

surface of the moon is perfectly flat near the astronaut. 3 There is no aero-

dynamic drag on the ball since there is no atmosphere on the moon. 4 Moon

gravity is one-sixth that of earth.

Properties The gravitational constant on the moon is gmoon ≅ 9.81/6

� 1.63 m/s2.

Analysis (a) The Froude number is calculated based on the value of gmoon

and the vertical component of initial speed,

from which

This value of Fr2 is nearly the same as the largest value plotted in Fig.

7–13. Thus, in terms of dimensionless variables, the baseball strikes the

ground at t* ≅ 2.75, as determined from Fig. 7–13. Converting back to

dimensional variables using Eq. 7–6,

Estimated time to strike the ground:

(b) An exact calculation is obtained by setting z equal to zero in Eq. 7–5

and solving for time t (using the quadratic formula),

t �
t*z0

w0

�
2.75(2.0 m)

1.830 m/s
� 3.01 s

Fr2 �
w 2

0

gmoonz0

�
(1.830 m/s)2

(1.63 m/s2)(2.0 m)
� 1.03

w0 � (21.0 m/s) sin(5
) � 1.830 m/s
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FIGURE 7–14

Throwing a baseball on the moon

(Example 7–4).
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Exact time to strike the ground:

Discussion If the Froude number had landed between two of the trajecto-

ries of Fig. 7–13, interpolation would have been required. Since some of

the numbers are precise to only two significant digits, the small difference

between the results of part (a) and part (b) is of no concern. The final result

is t � 3.0 s to two significant digits.

The differential equations of motion for fluid flow are derived and dis-

cussed in Chap. 9. In Chap. 10 you will find an analysis similar to that pre-

sented here, but applied to the differential equations for fluid flow. It turns

out that the Froude number also appears in that analysis, as do three other

important dimensionless parameters—the Reynolds number, Euler number,

and Strouhal number (Fig. 7–15).

7–3 � DIMENSIONAL ANALYSIS AND SIMILARITY

Nondimensionalization of an equation by inspectional analysis is useful

only when one knows the equation to begin with. However, in many cases

in real-life engineering, the equations are either not known or too difficult to

solve; oftentimes experimentation is the only method of obtaining reliable

information. In most experiments, to save time and money, tests are per-

formed on a geometrically scaled model, rather than on the full-scale proto-

type. In such cases, care must be taken to properly scale the results. We

introduce here a powerful technique called dimensional analysis. While

typically taught in fluid mechanics, dimensional analysis is useful in all dis-

ciplines, especially when it is necessary to design and conduct experiments.

You are encouraged to use this powerful tool in other subjects as well, not just

in fluid mechanics. The three primary purposes of dimensional analysis are

• To generate nondimensional parameters that help in the design of

experiments (physical and/or numerical) and in the reporting of

experimental results

• To obtain scaling laws so that prototype performance can be predicted

from model performance

• To (sometimes) predict trends in the relationship between parameters

Before discussing the technique of dimensional analysis, we first explain

the underlying concept of dimensional analysis—the principle of similarity.

There are three necessary conditions for complete similarity between a

model and a prototype. The first condition is geometric similarity—the

model must be the same shape as the prototype, but may be scaled by some

constant scale factor. The second condition is kinematic similarity, which

means that the velocity at any point in the model flow must be proportional

 �
1.830 m/s � 2(1.830 m/s)2 � 2(2.0 m)(1.63 m/s2)

1.63 m/s2
� 3.05 s

t �
w0 � 2w 2

0 � 2z0g

g
 

277
CHAPTER 7

r, m

g
P

∞

P0

L

f V

Re =
rVL

m

St =
fL

V
Eu =

P0 – P
∞

rV2

Fr =
V

gL

FIGURE 7–15

In a general unsteady fluid flow

problem with a free surface, the

scaling parameters include a

characteristic length L,

a characteristic velocity V, a

characteristic frequency f, and a

reference pressure difference 

P0 � P�. Nondimensionalization of

the differential equations of fluid flow

produces four dimensionless

parameters: the Reynolds number,

Froude number, Strouhal number,

and Euler number (see Chap. 10).
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(by a constant scale factor) to the velocity at the corresponding point in the

prototype flow (Fig. 7–16). Specifically, for kinematic similarity the velocity

at corresponding points must scale in magnitude and must point in the same

relative direction. You may think of geometric similarity as length-scale

equivalence and kinematic similarity as time-scale equivalence. Geometric

similarity is a prerequisite for kinematic similarity. Just as the geometric

scale factor can be less than, equal to, or greater than one, so can the velocity

scale factor. In Fig. 7–16, for example, the geometric scale factor is less than

one (model smaller than prototype), but the velocity scale is greater than one

(velocities around the model are greater than those around the prototype).

You may recall from Chap. 4 that streamlines are kinematic phenomena;

hence, the streamline pattern in the model flow is a geometrically scaled

copy of that in the prototype flow when kinematic similarity is achieved.

The third and most restrictive similarity condition is that of dynamic sim-

ilarity. Dynamic similarity is achieved when all forces in the model flow

scale by a constant factor to corresponding forces in the prototype flow

(force-scale equivalence). As with geometric and kinematic similarity, the

scale factor for forces can be less than, equal to, or greater than one. In Fig.

7–16 for example, the force-scale factor is less than one since the force on

the model building is less than that on the prototype. Kinematic similarity is

a necessary but insufficient condition for dynamic similarity. It is thus pos-

sible for a model flow and a prototype flow to achieve both geometric and

kinematic similarity, yet not dynamic similarity. All three similarity condi-

tions must exist for complete similarity to be ensured.

In a general flow field, complete similarity between a model and prototype is
achieved only when there is geometric, kinematic, and dynamic similarity.

We let uppercase Greek letter Pi (�) denote a nondimensional parameter.

You are already familiar with one �, namely the Froude number, Fr. In a

general dimensional analysis problem, there is one � that we call the

dependent �, giving it the notation �1. The parameter �1 is in general a

function of several other �’s, which we call independent �’s. The func-

tional relationship is

Functional relationship between �’s: (7–11)

where k is the total number of �’s.

Consider an experiment in which a scale model is tested to simulate a

prototype flow. To ensure complete similarity between the model and the

prototype, each independent � of the model (subscript m) must be identical

to the corresponding independent � of the prototype (subscript p), i.e., �2, m

� �2, p, �3, m � �3, p, . . . , �k, m � �k, p.

To ensure complete similarity, the model and prototype must be geometrically
similar, and all independent � groups must match between model and
prototype.

Under these conditions the dependent � of the model (�1, m) is guaranteed

to also equal the dependent � of the prototype (�1, p). Mathematically, we

write a conditional statement for achieving similarity,

(7–12) then  �1, m � �1, p

 If    �2, m � �2, p  and  �3, m � �3, p p    and  �k, m � �k, p,

�1 � f (�2, �3, p  , �k)
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Prototype:

Model:

Vp

Vm

FD, m

FD, p

FIGURE 7–16

Kinematic similarity is achieved when,

at all locations, the velocity in the

model flow is proportional to that 

at corresponding locations in the

prototype flow, and points in the 

same direction.
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Consider, for example, the design of a new sports car, the aerodynamics

of which is to be tested in a wind tunnel. To save money, it is desirable to

test a small, geometrically scaled model of the car rather than a full-scale

prototype of the car (Fig. 7–17). In the case of aerodynamic drag on an

automobile, it turns out that if the flow is approximated as incompressible,

there are only two �’s in the problem,

(7–13)

The procedure used to generate these �’s is discussed in Section 7–4. In Eq.

7–13, FD is the magnitude of the aerodynamic drag on the car, r is the air

density, V is the car’s speed (or the speed of the air in the wind tunnel), L is

the length of the car, and m is the viscosity of the air. �1 is a nonstandard

form of the drag coefficient, and �2 is the Reynolds number, Re. You will

find that many problems in fluid mechanics involve a Reynolds number

(Fig. 7–18).

The Reynolds number is the most well known and useful dimensionless
parameter in all of fluid mechanics.

In the problem at hand there is only one independent �, and Eq. 7–12

ensures that if the independent �’s match (the Reynolds numbers match:

�2, m � �2, p), then the dependent �’s also match (�1, m � �1, p). This

enables engineers to measure the aerodynamic drag on the model car and

then use this value to predict the aerodynamic drag on the prototype car.

EXAMPLE 7–5 Similarity between Model and Prototype Cars

The aerodynamic drag of a new sports car is to be predicted at a speed of

50.0 mi/h at an air temperature of 25°C. Automotive engineers build a one-

fifth scale model of the car to test in a wind tunnel. It is winter and the wind

tunnel is located in an unheated building; the temperature of the wind tunnel

air is only about 5°C. Determine how fast the engineers should run the wind

tunnel in order to achieve similarity between the model and the prototype.

SOLUTION We are to utilize the concept of similarity to determine the

speed of the wind tunnel.

Assumptions 1 Compressibility of the air is negligible (the validity of this

approximation is discussed later). 2 The wind tunnel walls are far enough

away so as to not interfere with the aerodynamic drag on the model car. 

3 The model is geometrically similar to the prototype. 4 The wind tunnel has

a moving belt to simulate the ground under the car, as in Fig. 7–19. (The 

moving belt is necessary in order to achieve kinematic similarity everywhere

in the flow, in particular underneath the car.)

Properties For air at atmospheric pressure and at T � 25°C, r � 1.184 kg/m3

and m � 1.849 � 10�5 kg/m · s. Similarly, at T � 5°C, r � 1.269 kg/m3 and

m � 1.754 � 10�5 kg/m · s.

Analysis Since there is only one independent � in this problem, the simi-

larity equation (Eq. 7–12) holds if �2, m � �2, p, where �2 is given by Eq.

7–13, and we call it the Reynolds number. Thus, we write

�2, m � Rem �
rmVmLm

mm

� �2, p � Rep �
rpVpLp

mp

�1 � f (�2)  where  �1 �
FD

rV 2L2
  and  �2 �

rVL

m
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Prototype car

Model car

Vp

mp, rp

Lp

Vm 

mm, rm

Lm

FIGURE 7–17

Geometric similarity between 

a prototype car of length Lp

and a model car of length Lm.

Re =  = 
rVL
m

r, m

VL
n

V

L

FIGURE 7–18

The Reynolds number Re is formed by

the ratio of density, characteristic

speed, and characteristic length to

viscosity. Alternatively, it is the ratio

of characteristic speed and length 

to kinematic viscosity, defined as 

n� m/r.

cen72367_ch07.qxd  10/29/04  2:27 PM  Page 279



which can be solved for the unknown wind tunnel speed for the model

tests, Vm,

Thus, to ensure similarity, the wind tunnel should be run at 221 mi/h (to

three significant digits). Note that we were never given the actual length of

either car, but the ratio of Lp to Lm is known because the prototype is five

times larger than the scale model. When the dimensional parameters are

rearranged as nondimensional ratios (as done here), the unit system is irrele-

vant. Since the units in each numerator cancel those in each denominator,

no unit conversions are necessary.

Discussion This speed is quite high (about 100 m/s), and the wind tunnel

may not be able to run at that speed. Furthermore, the incompressible

approximation may come into question at this high speed (we discuss this in

more detail in Example 7–8).

Once we are convinced that complete similarity has been achieved

between the model tests and the prototype flow, Eq. 7–12 can be used again

to predict the performance of the prototype based on measurements of the

performance of the model. This is illustrated in Example 7–6.

EXAMPLE 7–6 Prediction of Aerodynamic Drag Force 

on the Prototype Car

This example is a follow-up to Example 7–5. Suppose the engineers run the

wind tunnel at 221 mi/h to achieve similarity between the model and the

prototype. The aerodynamic drag force on the model car is measured with a

drag balance (Fig. 7–19). Several drag readings are recorded, and the aver-

age drag force on the model is 21.2 lbf. Predict the aerodynamic drag force

on the prototype (at 50 mi/h and 25°C).

SOLUTION Because of similarity, the model results can be scaled up to pre-

dict the aerodynamic drag force on the prototype.

Analysis The similarity equation (Eq. 7–12) shows that since �2, m � �2, p,

�1, m � �1, p, where �1 is given for this problem by Eq. 7–13. Thus, we write

which can be solved for the unknown aerodynamic drag force on the proto-

type car, FD, p,

 � (21.2 lbf)a1.184 kg/m3

1.269 kg/m3
b a50.0 mi/h

221 mi/h
b 2

(5)2 � 25.3 lbf

 FD, p � FD, marp

rm

b aVp

Vm

b 2aLp

Lm

b 2

 

�1, m �
FD, m

rmV 2
mL2

m

� �1, p �
FD, p

rpV
2
pL2

p

 � (50.0 mi/h)˛a1.754 � 10�5 kg/m � s

1.849 � 10�5 kg/m � s
b ˛a1.184 kg/m3

1.269 kg/m3
b (5) � 221 mi/h

 Vm � Vpamm

mp

b arp

rm

b aLp

Lm

b  
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Model

Moving belt

Wind tunnel test section

Drag balance

FD

V

FIGURE 7–19

A drag balance is a device used 

in a wind tunnel to measure the

aerodynamic drag of a body. When

testing automobile models, a moving

belt is often added to the floor of the

wind tunnel to simulate the moving

ground (from the car’s frame of

reference).
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Discussion By arranging the dimensional parameters as nondimensional

ratios, the units cancel nicely even though they are a mixture of SI and Eng-

lish units. Because both velocity and length are squared in the equation for

�1, the higher speed in the wind tunnel nearly compensates for the model’s

smaller size, and the drag force on the model is nearly the same as that on

the prototype. In fact, if the density and viscosity of the air in the wind tun-

nel were identical to those of the air flowing over the prototype, the two drag

forces would be identical as well (Fig. 7–20).

The power of using dimensional analysis and similarity to supplement

experimental analysis is further illustrated by the fact that the actual values

of the dimensional parameters (density, velocity, etc.) are irrelevant. As long

as the corresponding independent �’s are set equal to each other, similarity

is achieved—even if different fluids are used. This explains why automobile

or aircraft performance can be simulated in a water tunnel, and the perfor-

mance of a submarine can be simulated in a wind tunnel (Fig. 7–21). Sup-

pose, for example, that the engineers in Examples 7–5 and 7–6 use a water

tunnel instead of a wind tunnel to test their one-fifth scale model. Using the

properties of water at room temperature (20°C is assumed), the water tunnel

speed required to achieve similarity is easily calculated as

As can be seen, one advantage of a water tunnel is that the required water

tunnel speed is much lower than that required for a wind tunnel using the

same size model.

7–4 � THE METHOD OF REPEATING VARIABLES
AND THE BUCKINGHAM PI THEOREM

We have seen several examples of the usefulness and power of dimensional

analysis. Now we are ready to learn how to generate the nondimensional

parameters, i.e., the �’s. There are several methods that have been developed

for this purpose, but the most popular (and simplest) method is the method

of repeating variables, popularized by Edgar Buckingham (1867–1940).

The method was first published by the Russian scientist Dimitri Riabou-

chinsky (1882–1962) in 1911. We can think of this method as a step-by-step

procedure or “recipe” for obtaining nondimensional parameters. There are

six steps, listed concisely in Fig. 7–22, and in more detail in Table 7–2.

These steps are explained in further detail as we work through a number of

example problems.

As with most new procedures, the best way to learn is by example and

practice. As a simple first example, consider a ball falling in a vacuum as

discussed in Section 7–2. Let us pretend that we do not know that Eq. 7–4 is

appropriate for this problem, nor do we know much physics concerning

falling objects. In fact, suppose that all we know is that the instantaneous

 � (50.0 mi/h)a1.002 � 10�3 kg/m � s)

1.849 � 10�5 kg/m � s
b a1.184 kg/m3

998.0 kg/m3
b (5) � 16.1 mi/h

 Vm � Vpamm

mp

b arp

rm

b aLp

Lm

b  

281
CHAPTER 7

FIGURE 7–21

Similarity can be achieved even when

the model fluid is different than the

prototype fluid. Here a submarine

model is tested in a wind tunnel.

Courtesy NASA Langley Research Center.

Prototype

Model

Vp

mp, rp
FD, p

Lp

Vm = Vp 

mm = mp

rm = rp
FD, m = FD, p

Lm

Lp

Lm

FIGURE 7–20

For the special case in which the wind

tunnel air and the air flowing over the

prototype have the same properties 

(rm � rp, mm � mp), and under

similarity conditions (Vm � VpLp/Lm),

the aerodynamic drag force on the

prototype is equal to that on the scale

model. If the two fluids do not have

the same properties, the two drag forces

are not necessarily the same, even

under dynamically similar conditions.
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elevation z of the ball must be a function of time t, initial vertical speed w0,

initial elevation z0, and gravitational constant g (Fig. 7–23). The beauty of

dimensional analysis is that the only other thing we need to know is the pri-

mary dimensions of each of these quantities. As we go through each step of

the method of repeating variables, we explain some of the subtleties of the

technique in more detail using the falling ball as an example.

Step 1
There are five parameters (dimensional variables, nondimensional variables,

and dimensional constants) in this problem; n � 5. They are listed in func-

tional form, with the dependent variable listed as a function of the indepen-

dent variables and constants:

List of relevant parameters: z � f(t, w0, z0, g)  n � 5
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TABLE 7–2

Detailed description of the six steps that comprise the method of repeating

variables*

Step 1 List the parameters (dimensional variables, nondimensional variables,

and dimensional constants) and count them. Let n be the total

number of parameters in the problem, including the dependent

variable. Make sure that any listed independent parameter is indeed

independent of the others, i.e., it cannot be expressed in terms of

them. (E.g., don’t include radius r and area A � pr2, since r and A

are not independent.)

Step 2 List the primary dimensions for each of the n parameters.

Step 3 Guess the reduction j. As a first guess, set j equal to the number of

primary dimensions represented in the problem. The expected

number of �’s (k) is equal to n minus j, according to the Buckingham

Pi theorem,

The Buckingham Pi theorem: (7–14)

If at this step or during any subsequent step, the analysis does not

work out, verify that you have included enough parameters in step 1.

Otherwise, go back and reduce j by one and try again.

Step 4 Choose j repeating parameters that will be used to construct each �.

Since the repeating parameters have the potential to appear in each

�, be sure to choose them wisely (Table 7–3).

Step 5 Generate the �’s one at a time by grouping the j repeating parameters

with one of the remaining parameters, forcing the product to be

dimensionless. In this way, construct all k �’s. By convention the first

�, designated as �1, is the dependent � (the one on the left side of

the list). Manipulate the �’s as necessary to achieve established

dimensionless groups (Table 7–5).

Step 6 Check that all the �’s are indeed dimensionless. Write the final

functional relationship in the form of Eq. 7–11.

* This is a step-by-step method for finding the dimensionless � groups when performing a dimensional
analysis.

k � n � j

The Method of Repeating Variables

Step 1: List the parameters in the problem
 and count their total number n.

Step 2: List the primary dimensions of each
 of the n parameters.

Step 5: Construct the k II’s, and manipulate
 as necessary.

Step 6: Write the final functional relationship
 and check your algebra.

Step 4: Choose j repeating parameters.

Step 3: Set the reduction j as the number
 of primary dimensions. Calculate k,
 the expected number of II’s, 
             k = n – j

FIGURE 7–22

A concise summary of the six steps

that comprise the method of repeating

variables.

w0 = initial vertical speed

z = 0 (datum plane)

z0 = initial
elevation

g = gravitational
acceleration in the
negative z-direction

z = elevation of ball
   = f (t, w0, z0, g)

FIGURE 7–23

Setup for dimensional analysis of a

ball falling in a vacuum. Elevation z is

a function of time t, initial vertical

speed w0, initial elevation z0, and

gravitational constant g.
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Step 2
The primary dimensions of each parameter are listed here. We recommend

writing each dimension with exponents since this helps with later algebra.

Step 3
As a first guess, j is set equal to 2, the number of primary dimensions repre-

sented in the problem (L and t).

Reduction:

If this value of j is correct, the number of �’s predicted by the Buckingham

Pi theorem is

Number of expected �’s:

Step 4
We need to choose two repeating parameters since j � 2. Since this is often

the hardest (or at least the most mysterious) part of the method of repeating

variables, several guidelines about choosing repeating parameters are listed

in Table 7–3.

Following the guidelines of Table 7–3 on the next page, the wisest choice

of two repeating parameters is w0 and z0.

Repeating parameters:

Step 5
Now we combine these repeating parameters into products with each of the

remaining parameters, one at a time, to create the �’s. The first � is always

the dependent � and is formed with the dependent variable z.

Dependent �: (7–15)

where a1 and b1 are constant exponents that need to be determined. We

apply the primary dimensions of step 2 into Eq. 7–15 and force the � to be

dimensionless by setting the exponent of each primary dimension to zero:

Dimensions of �1:

Since primary dimensions are by definition independent of each other, we

equate the exponents of each primary dimension independently to solve for

exponents a1 and b1 (Fig. 7–24).

Time:

Length:

Equation 7–15 thus becomes

(7–16)�1 �
z

z0

{L0} � {L1La1Lb1}  0 � 1 � a1 � b1  b1 � �1 � a1  b1 � �1

 {t0} � {t�a1}   0 � �a1  a1 � 0

{�1} � {L0t0} � {zwa1
0 zb1

0 } � {L1(L1t�1)a1Lb1}

�1 � zwa1
0 zb1

0

w0 and z0

k � n � j � 5 � 2 � 3

j � 2

z t w0 z0 g

{L1} {t1} {L1t�1} {L1} {L1t�2}
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Multiplication: Add exponents
a+b+

Division: Subtract exponents

FIGURE 7–24

The mathematical rules for adding 

and subtracting exponents during

multiplication and division,

respectively.
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In similar fashion we create the first independent � (�2) by combining

the repeating parameters with independent variable t.

First independent �:

Dimensions of �2: {�2} � {L0t0} � {twa2
0 zb2

0 } � {t(L1t�1)a2Lb2}

�2 � twa2
0 zb2

0
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TABLE 7–3

Guidelines for choosing repeating parameters in step 4 of the method of repeating variables*

Guideline Comments and Application to Present Problem

1. Never pick the dependent variable. In the present problem we cannot choose z, but we must choose from among 

Otherwise, it may appear in all the the remaining four parameters. Therefore, we must choose two of the following 

�’s, which is undesirable. parameters: t, w0, z0, and g.

2. The chosen repeating parameters In the present problem, any two of the independent parameters would be valid 

must not by themselves be able according to this guideline. For illustrative purposes, however, suppose we have

to form a dimensionless group. to pick three instead of two repeating parameters. We could not, for example,

Otherwise, it would be impossible choose t, w0, and z0, because these can form a � all by themselves (tw0/z0).

to generate the rest of the �’s.

3. The chosen repeating parameters Suppose for example that there were three primary dimensions (m, L, and t) and

must represent all the primary two repeating parameters were to be chosen. You could not choose, say, a length

dimensions in the problem. and a time, since primary dimension mass would not be represented in the

dimensions of the repeating parameters. An appropriate choice would be a density

and a time, which together represent all three primary dimensions in the problem.

4. Never pick parameters that are Suppose an angle u were one of the independent parameters. We could not choose

already dimensionless. These are u as a repeating parameter since angles have no dimensions (radian and degree

�’s already, all by themselves. are dimensionless units). In such a case, one of the �’s is already known, namely u.

5. Never pick two parameters with In the present problem, two of the parameters, z and z0, have the same 

the same dimensions or with dimensions (length). We cannot choose both of these parameters.

dimensions that differ by only (Note that dependent variable z has already been eliminated by guideline 1.) 

an exponent. Suppose one parameter has dimensions of length and another parameter has

dimensions of volume. In dimensional analysis, volume contains only one primary

dimension (length) and is not dimensionally distinct from length—we cannot

choose both of these parameters.

6. Whenever possible, choose If we choose time t as a repeating parameter in the present problem, it would 

dimensional constants over appear in all three �’s. While this would not be wrong, it would not be wise

dimensional variables so that since we know that ultimately we want some nondimensional height as a 

only one � contains the function of some nondimensional time and other nondimensional parameter(s).

dimensional variable. From the original four independent parameters, this restricts us to w0, z0, and g.

7. Pick common parameters since In fluid flow problems we generally pick a length, a velocity, and a mass or 

they may appear in each of the �’s. density (Fig. 7–25). It is unwise to pick less common parameters like  viscosity m

or surface tension ss, since we would in general not want m or ss to appear in

each of the �’s. In the present problem, w0 and z0 are wiser choices than g.

8. Pick simple parameters over It is better to pick parameters with only one or two basic dimensions (e.g., 

complex parameters whenever a length, a time, a mass, or a velocity) instead of parameters that are composed 

possible. of several basic dimensions (e.g., an energy or a pressure).

* These guidelines, while not infallible, help you to pick repeating parameters that usually lead to established nondimensional � groups with minimal effort.
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Equating exponents,

Time:

Length:

�2 is thus

(7–17)

Finally we create the second independent � (�3) by combining the repeat-

ing parameters with g and forcing the � to be dimensionless (Fig. 7–26).

Second independent �:

Dimensions of �3:

Equating exponents,

Time:

Length:

�3 is thus

(7–18)

All three �’s have been found, but at this point it is prudent to examine

them to see if any manipulation is required. We see immediately that �1 and

�2 are the same as the nondimensionalized variables z* and t* defined by

Eq. 7–6—no manipulation is necessary for these. However, we recognize

that the third � must be raised to the power of to be of the same form

as an established dimensionless parameter, namely the Froude number of

Eq. 7–8:

Modified �3: (7–19)

Such manipulation is often necessary to put the �’s into proper estab-

lished form. The � of Eq. 7–18 is not wrong, and there is certainly no

mathematical advantage of Eq. 7–19 over Eq. 7–18. Instead, we like to

say that Eq. 7–19 is more “socially acceptable” than Eq. 7–18, since it is a

named, established nondimensional parameter that is commonly used in

the literature. In Table 7–4 are listed some guidelines for manipulation of

your nondimensional � groups into established nondimensional parameters.

Table 7–5 lists some established nondimensional parameters, most of

which are named after a notable scientist or engineer (see Fig. 7–27 and the

Historical Spotlight on p. 289). This list is by no means exhaustive. When-

ever possible, you should manipulate your �’s as necessary in order to con-

vert them into established nondimensional parameters.

�3, modified � agz0

w 2
0

b�1/2

�
w0

2gz0

� Fr

�1
2

�3 �
gz0

w2
0

{L0} � {L1La3Lb3}  0 � 1 � a3 � b3  b3 � �1 � a3  b3 � 1

 {t0} � {t�2t�a3}  0 � �2 � a3  a3 � �2

{�3} � {L0t0} � {gwa3
0 zb3

0 } � {L1t�2(L1t�1)a3Lb3}

�3 � gw a3
0 zb3

0

�2 �
w0t

z0

 {L0} � {La2Lb2}  0 � a2 � b2  b2 � �a2  b2 � �1

 {t0} � {t1t�a2}  0 � 1 � a2  a2 � 1
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Hint of the Day
 

A wise choice of

repeating parameters

for most fluid flow

problems is a length,

a velocity, and a mass

or density.

FIGURE 7–25

It is wise to choose common

parameters as repeating parameters

since they may appear in each of 

your dimensionless � groups.

{II1} = {m0L0t0T0I0C0N0} = {1}

{II2} = {m0L0t0T0I0C0N0} = {1}

{IIk} = {m0L0t0T0I0C0N0} = {1}

•

•

•

FIGURE 7–26

The � groups that result from the

method of repeating variables are

guaranteed to be dimensionless

because we force the overall 

exponent of all seven primary

dimensions to be zero.
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Step 6
We should double-check that the �’s are indeed dimensionless (Fig. 7–28).

You can verify this on your own for the present example. We are finally

ready to write the functional relationship between the nondimensional para-

meters. Combining Eqs. 7–16, 7–17, and 7–19 into the form of Eq. 7–11,

Relationship between �’s:

Or, in terms of the nondimensional variables z* and t* defined previously

by Eq. 7–6 and the definition of the Froude number,

Final result of dimensional analysis: (7–20)

It is useful to compare the result of dimensional analysis, Eq. 7–20, to the

exact analytical result, Eq. 7–10. The method of repeating variables prop-

erly predicts the functional relationship between dimensionless groups.

However,

The method of repeating variables cannot predict the exact mathematical
form of the equation.

This is a fundamental limitation of dimensional analysis and the method of

repeating variables. For some simple problems, however, the form of the

equation can be predicted to within an unknown constant, as is illustrated in

Example 7–7.

z* � f (t˛*, Fr)

�1 � f (�2, �3)  →   
z

z0

� f ¢w0t

z0

, 
w0

2gz0

≤
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TABLE 7–4

Guidelines for manipulation of the �’s resulting from the method of repeating variables.*

Guideline Comments and Application to Present Problem

1. We may impose a constant We can raise a � to any exponent n (changing it to �n) without changing the 

(dimensionless) exponent on  dimensionless stature of the �. For example, in the present problem, we 

a � or perform a functional imposed an exponent of on �3. Similarly we can perform the functional 

operation on a �. operation sin(�), exp(�), etc., without influencing the dimensions of the �.

2. We may multiply a � by a Sometimes dimensionless factors of , 2, 4, etc., are included in a � for 

pure (dimensionless) constant. convenience. This is perfectly okay since such factors do not influence the

dimensions of the �.

3. We may form a product (or quotient) We could replace �3 by �3�1, �3/�2, etc. Sometimes such manipulation is

of any � with any other � in the necessary to convert our � into an established �. In many cases, the 

problem to replace one of the �’s. established � would have been produced if we would have chosen different 

repeating parameters. 

4. We may use any of guidelines In general, we can replace any � with some new � such as A�3
B sin(�1

C),  

1 to 3 in combination. where A, B, and C are pure constants.

5. We may substitute a dimensional For example, the � may contain the square of a length or the cube of a  

parameter in the � with other length, for which we may substitute a known area or volume, respectively, in   

parameter(s) of the same dimensions. order to make the � agree with established conventions.

*These guidelines are useful in step 5 of the method of repeating variables and are listed to help you convert your nondimensional � groups into standard,
established nondimensional parameters, many of which are listed in Table 7–5.

1
2

�1
2

Wow!

Aaron, you've made it! 
They named a nondimensional
parameter after you!

FIGURE 7–27

Established nondimensional

parameters are usually named after 

a notable scientist or engineer.
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TABLE 7–5

Some common established nondimensional parameters or �’s encountered in fluid

mechanics and heat transfer*

Name Definition Ratio of Significance

Archimedes number

Aspect ratio

Biot number

Bond number

Cavitation number

Darcy friction factor

Drag coefficient

Eckert number

Euler number

Fanning friction factor

Fourier number

Froude number

Grashof number

Jakob number

Knudsen number

Lewis number

Lift coefficient

(Continued)

Lift force

Dynamic force
CL �

FL

1
2rV

2A

Thermal diffusion

Species diffusion
Le �

k

rcpDAB

�
a

DAB

Mean free path length

Characteristic length
Kn �

l

L

Sensible energy

Latent energy
Ja �

cp(T � Tsat)

hfg

Buoyancy force

Viscous force
Gr �

gb 0�T 0L3r2

m2

Inertial force

Gravitational force
Fr �

V

2gL
 asometimes 

V˛

2

gL
≤

Physical time

Thermal diffusion time
Fo (sometimes t) �

at

L2

Wall friction force

Inertial force
Cf �

2tw

rV 2

Pressure difference

Dynamic pressure
Eu �

�P

rV 2
 asometimes 

�P
1
2rV

2
≤

Kinetic energy

Enthalpy
Ec �

V 2

cPT

Drag force

Dynamic force
CD �

FD

1
2rV

2A

Wall friction force

Inertial force
f �

8tw

rV 2

asometimes 
2(P � Pv )

rV˛˛

2
 ≤

Pressure �  Vapor pressure

Inertial pressure
Ca (sometimes sc) �

P � Pv

rV˛˛

2

Gravitational force

Surface tension force
Bo �

g(rf � rv)L
2

ss

Surface thermal resistance

Internal thermal resistance
Bi �

hL

k

Length

Width
 or 

Length

Diameter
AR �

L

W
 or 

L

D

Gravitational force

Viscous force
Ar �

rsgL3

m2
(rs � r)

ARE YOUR PI’S

DIMENSIONLESS?

FIGURE 7–28

A quick check of your algebra 

is always wise.
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TABLE 7–5 (Cont inued)

Name Definition Ratio of Significance

Mach number

Nusselt number

Peclet number

Power number

Prandtl number

Pressure coefficient

Rayleigh number

Reynolds number

Richardson number

Schmidt number

Sherwood number

Specific heat ratio

Stanton number

Stokes number

Strouhal number

Weber number

* A is a characteristic area, D is a characteristic diameter, f is a characteristic frequency (Hz), L is a
characteristic length, t is a characteristic time, T is a characteristic (absolute) temperature, V is a
characteristic velocity, W is a characteristic width, W

.
is a characteristic power, v is a characteristic angular

velocity (rad/s). Other parameters and fluid properties in these �’s include: c � speed of sound, cp, cv �
specific heats, Dp � particle diameter, DAB � species diffusion coefficient, h � convective heat transfer
coefficient, hfg � latent heat of evaporation, k � thermal conductivity, P � pressure, Tsat � saturation
temperature, � volume flow rate, a � thermal diffusivity, b � coefficient of thermal expansion, l � mean
free path length, m � viscosity, n � kinematic viscosity, r � fluid density, rf � liquid density, rp � particle
density, rs � solid density, rv � vapor density, ss � surface tension, and tw � shear stress along a wall.

V
#

Inertial force

Surface tension force
We �

rV 2L

ss

Characteristic flow time

Period of oscillation
St (sometimes S or Sr) �

fL

V

Particle relaxation time

Characteristic flow time
Stk (sometimes St) �

rpD
2
pV

18mL

Heat transfer

Thermal capacity
St �

h

rcpV

Enthalpy

Internal energy
k (sometimes g) �

cp

cv

Overall mass diffusion

Species diffusion
Sh �

VL

DAB

Viscous diffusion

Species diffusion
Sc �

m

rDAB

�
n

DAB

Buoyancy force

Inertial force
Ri �

L5g �r

rV
#

2

Inertial force

Viscous force
Re �

rVL

m
�

VL

v

Buoyancy force

Viscous force
Ra �

gb 0�T 0L3r2cp

km

Static pressure difference

Dynamic pressure
Cp �

P � P�

1
2rV

2

Viscous diffusion

Thermal diffusion
Pr �

n

a
�
mcp

k

Power

Rotational inertia
NP �

W
#

rD5v3

Bulk heat transfer

Conduction heat transfer
Pe �

rLVcp

k
�

LV

a

Convection heat transfer

Conduction heat transfer
Nu �

Lh

k

Flow speed

Speed of sound
Ma (sometimes M) �

V

c
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Commonly used, established dimensionless numbers have been given names for convenience, and to honor persons

who have contributed in the development of science and engineering.  In many cases, the namesake was not the first to

define the number, but usually he/she used it or a similar parameter in his/her work.  The following is a list of some,

but not all, such persons.  Also keep in mind that some numbers may have more than one name.

HISTORICAL SPOTLIGHT � Persons Honored by Nondimensional Parameters

speed of sound would drastically alter the properties of

the fluid. His ideas had great influence on twentieth-

century thought, both in physics and in philosophy, and

influenced Einstein’s development of the theory of

relativity.

Nusselt, Wilhelm (1882–1957) German engineer who was

the first to apply similarity theory to heat transfer.

Peclet, Jean C. E. (1793–1857)  French educator,

physicist, and industrial researcher.

Prandtl, Ludwig (1875–1953)  German engineer and

developer of boundary layer theory who is considered

the founder of modern fluid mechanics.

Lord Raleigh, John W. Strutt (1842–1919) English

scientist who investigated dynamic similarity,

cavitation, and bubble collapse.

Reynolds, Osborne (1842–1912) English engineer who

investigated flow in pipes and developed viscous flow

equations based on mean velocities.

Richardson, Lewis F. (1881–1953)  English

mathematician, physicist, and psychologist who was 

a pioneer in the application of fluid mechanics to the

modeling of atmospheric turbulence.

Schmidt, Ernst (1892–1975)  German scientist and

pioneer in the field of heat and mass transfer.  He was

the first to measure the velocity and temperature field

in a free convection boundary layer.

Sherwood, Thomas K. (1903–1976)  American engineer

and educator.  He researched mass transfer and its

interaction with flow, chemical reactions, and

industrial process operations.

Stanton, Thomas E. (1865–1931) English engineer and

student of Reynolds who contributed to a number of

areas of fluid flow.

Stokes, George G. (1819–1903) Irish scientist who

developed equations of viscous motion and diffusion.

Strouhal, Vincenz (1850–1922) Czech physicist who

showed that the period of oscillations shed by a wire

are related to the velocity of the air passing over it.

Weber, Moritz (1871–1951) German professor who

applied similarity analysis to capillary flows.

Archimedes (287–212 BC)  Greek mathematician who

defined buoyant forces.

Biot, Jean-Baptiste (1774–1862)  French mathematician

who did pioneering work in heat, electricity, and

elasticity.  He also helped measure the arc of the

meridian as part of the metric system development.

Darcy, Henry P. G. (1803–1858)  French engineer who

performed extensive experiments on pipe flow and 

the first quantifiable filtration tests.

Eckert, Ernst R. G. (1904–2004) German–American

engineer and student of Schmidt who did early work 

in boundary layer heat transfer.

Euler, Leonhard (1797–1783)  Swiss mathematician and

associate of Daniel Bernoulli who formulated

equations of fluid motion and introduced the concept

of centrifugal machinery.

Fanning, John T. (1837–1911)  American engineer and

textbook author who published in 1877 a modified

form of Weisbach’s equation with a table of resistance

values computed from Darcy’s data.

Fourier, Jean B. J. (1768–1830)  French mathematician

who did pioneering work in heat transfer and several

other topics.

Froude, William (1810–1879) English engineer who

developed naval modeling methods and the transfer 

of wave and boundary resistance from model to

prototype.

Grashof, Franz (1826–1893) German engineer and

educator known as a prolific author, editor, corrector,

and dispatcher of publications.

Jakob, Max (1879–1955) German–American physicist,

engineer, and textbook author who did pioneering

work in heat transfer.

Knudsen, Martin (1871–1949)  Danish physicist who

helped developed the kinetic theory of gases.

Lewis, Warren K. (1882–1975) American engineer who

researched distillation, extraction, and fluidized bed

reactions.

Mach, Ernst (1838–1916) Austrian physicist who was

first to realize that bodies traveling faster than the
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EXAMPLE 7–7 Pressure in a Soap Bubble

Some children are playing with soap bubbles, and you become curious as to

the relationship between soap bubble radius and the pressure inside the

soap bubble (Fig. 7–29). You reason that the pressure inside the soap bub-

ble must be greater than atmospheric pressure, and that the shell of the

soap bubble is under tension, much like the skin of a balloon. You also know

that the property surface tension must be important in this problem. Not

knowing any other physics, you decide to approach the problem using

dimensional analysis. Establish a relationship between pressure difference

�P � Pinside � Poutside, soap bubble radius R, and the surface tension ss of

the soap film.

SOLUTION The pressure difference between the inside of a soap bubble

and the outside air is to be analyzed by the method of repeating variables.

Assumptions 1 The soap bubble is neutrally buoyant in the air, and gravity is

not relevant. 2 No other variables or constants are important in this problem.

Analysis The step-by-step method of repeating variables is employed.

Step 1 There are three variables and constants in this problem; n � 3.

They are listed in functional form, with the dependent variable listed as a

function of the independent variables and constants:

List of relevant parameters:

Step 2 The primary dimensions of each parameter are listed. The

dimensions of surface tension are obtained from Example 7–1, and those

of pressure from Example 7–2.

Step 3 As a first guess, j is set equal to 3, the number of primary

dimensions represented in the problem (m, L, and t).

Reduction (first guess): j � 3

If this value of j is correct, the expected number of �’s is k � n � j � 3 �

3 � 0. But how can we have zero �’s? Something is obviously not right

(Fig. 7–30). At times like this, we need to first go back and make sure that

we are not neglecting some important variable or constant in the problem.

Since we are confident that the pressure difference should depend only on

soap bubble radius and surface tension, we reduce the value of j by one,

Reduction (second guess): j � 2

If this value of j is correct, k � n � j � 3 � 2 � 1. Thus we expect one �,

which is more physically realistic than zero �’s.

Step 4 We need to choose two repeating parameters since j � 2.

Following the guidelines of Table 7–3, our only choices are R and ss, since

�P is the dependent variable.

Step 5 We combine these repeating parameters into a product with the

dependent variable �P to create the dependent �,

Dependent �: (1)�1 � �PRa1sb1
s

�P R ss

{m1L�1t�2} {L1} {m1t�2}

�P � f (R, ss)  n � 3

Soap 
film

Pinside

Poutside

ss

ss

R

FIGURE 7–29

The pressure inside a soap bubble is

greater than that surrounding the soap

bubble due to surface tension in the

soap film.

What happens if

k  0?

Do the following:

 Check your list of parameters.

 Check your algebra.

 If all else fails, reduce  by one.

FIGURE 7–30

If the method of repeating variables

indicates zero �’s, we have either

made an error, or we need to 

reduce j by one and start over.
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We apply the primary dimensions of step 2 into Eq. 1 and force the � to be

dimensionless.

Dimensions of �1:

We equate the exponents of each primary dimension to solve for a1 and b1:

Time:

Mass:

Length:

Fortunately, the first two results agree with each other, and Eq. 1 thus

becomes

(2)

From Table 7–5, the established nondimensional parameter most similar to

Eq. 2 is the Weber number, defined as a pressure (rV2) times a length

divided by surface tension. There is no need to further manipulate this �.

Step 6 We write the final functional relationship. In the case at hand,

there is only one �, which is a function of nothing. This is possible only if

the � is constant. Putting Eq. 2 into the functional form of Eq. 7–11,

Relationship between �’s:

(3)

Discussion This is an example of how we can sometimes predict trends with

dimensional analysis, even without knowing much of the physics of the prob-

lem. For example, we know from our result that if the radius of the soap

bubble doubles, the pressure difference decreases by a factor of 2. Similarly,

if the value of surface tension doubles, �P increases by a factor of 2. Dimen-

sional analysis cannot predict the value of the constant in Eq. 3; further

analysis (or one experiment) reveals that the constant is equal to 4 (Chap. 2).

EXAMPLE 7–8 Lift on a Wing

Some aeronautical engineers are designing an airplane and wish to predict

the lift produced by their new wing design (Fig. 7–31). The chord length Lc

of the wing is 1.12 m, and its planform area A (area viewed from the top

when the wing is at zero angle of attack) is 10.7 m2. The prototype is to fly

at V � 52.0 m/s close to the ground where T � 25°C. They build a one-tenth

scale model of the wing to test in a pressurized wind tunnel. The wind tun-

nel can be pressurized to a maximum of 5 atm. At what speed and pressure

should they run the wind tunnel in order to achieve dynamic similarity?

SOLUTION We are to determine the speed and pressure at which to run the

wind tunnel in order to achieve dynamic similarity.

�1 �
�PR

ss

� f (nothing) � constant →  �P � constant 
Ss

R

�1 �
�PR

ss

 {L0} � {L�1La1}  0 � �1 � a1  a1 � 1 

 {m0} � {m1mb1}  0 � 1 � b1  b1 � �1 

 {t0} � {t�2t�2b1}    0 � �2 � 2b1  b1 � �1 

{�1} � {m0L0t0} � {�PR˛

a1sb1
s } � {(m1L�1t�2)La1(m1t�2)b1}
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Lc

FL

V

r, m, c

a

FIGURE 7–31

Lift on a wing of chord length Lc

at angle of attack a in a flow of free-

stream speed V with density r,

viscosity m, and speed of sound c. The

angle of attack a is measured relative

to the free-stream flow direction.
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Assumptions 1 The prototype wing flies through the air at standard atmos-

pheric pressure. 2 The model is geometrically similar to the prototype.

Analysis First, the step-by-step method of repeating variables is employed

to obtain the nondimensional parameters. Then, the dependent �’s are

matched between prototype and model.

Step 1 There are seven parameters (variables and constants) in this

problem; n � 7. They are listed in functional form, with the dependent

variable listed as a function of the independent parameters:

List of relevant parameters:

where FL is the lift force on the wing, V is the fluid speed, Lc is the chord

length, r is the fluid density, m is the fluid viscosity, c is the speed of

sound in the fluid, and a is the angle of attack of the wing.

Step 2 The primary dimensions of each parameter are listed; angle a is

dimensionless:

Step 3 As a first guess, j is set equal to 3, the number of primary

dimensions represented in the problem (m, L, and t).

Reduction: j � 3

If this value of j is correct, the expected number of �’s is k � n � j � 7 � 3

� 4.

Step 4 We need to choose three repeating parameters since j � 3. Following

the guidelines listed in Table 7–3, we cannot pick the dependent variable FL.

Nor can we pick a since it is already dimensionless. We cannot choose both

V and c since their dimensions are identical. It would not be desirable to

have m appear in all the �’s. The best choice of repeating parameters is

thus either V, Lc, and r or c, Lc, and r. Of these, the former is the better

choice since the speed of sound appears in only one of the established

nondimensional parameters of Table 7–5, whereas the velocity scale is

more “common” and appears in several of the parameters (Fig. 7–32).

Repeating parameters:

Step 5 The dependent � is generated:

The exponents are calculated by forcing the � to be dimensionless 

(algebra not shown). We get a1 � �2, b1 � �2, and c1 � �1. The

dependent � is thus

From Table 7–5, the established nondimensional parameter most similar to

our �1 is the lift coefficient, defined in terms of planform area A rather than

the square of chord length, and with a factor of in the denominator. Thus,

we may manipulate this � according to the guidelines listed in Table 7–4

as follows:

Modified �1: �1, modified �
FL

1
2rV

2A
� Lift coefficient � CL

1
2

�1 �
FL

rV 2Lc
2

�1 � FLV a1Lb1
c r

c1 →  {�1} � {(m1L1t�2)(L1t�1)a1(L1)b1(m1L�3)c1}

V, Lc, and r

FL V Lc r m c a

{m1L1t�2} {L1t�1} {L1} {m1L�3} {m1L�1t�1} {L1t�1} {1}

FL � f (V, Lc, r, m, c, a)  n � 7
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CAUTION!

 

CHOOSE  YOUR 

REPEATING 

PARAMETERS 

WISELY

FIGURE 7–32

Oftentimes when performing the

method of repeating variables, the

most difficult part of the procedure is

choosing the repeating parameters.

With practice, however, you will learn

to choose these parameters wisely.
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Similarly, the first independent � is generated:

from which a2 � �1, b2 � �1, and c2 � �1, and thus

We recognize this � as the inverse of the Reynolds number. So, after

inverting,

Modified �2:

The third � is formed with the speed of sound, the details of which are left

for you to generate on your own. The result is

Finally, since the angle of attack a is already dimensionless, it is a

dimensionless � group all by itself (Fig. 7–33). You are invited to go

through the algebra; you will find that all the exponents turn out to be zero,

and thus

Step 6 We write the final functional relationship as

(1)

To achieve dynamic similarity, Eq. 7–12 requires that all three of the

dependent nondimensional parameters in Eq. 1 match between the model

and the prototype. While it is trivial to match the angle of attack, it is not so

simple to simultaneously match the Reynolds number and the Mach number.

For example, if the wind tunnel were run at the same temperature and pres-

sure as those of the prototype, such that r, m, and c of the air flowing over

the model were the same as r, m, and c of the air flowing over the prototype,

Reynolds number similarity would be achieved by setting the wind tunnel air

speed to 10 times that of the prototype (since the model is one-tenth scale).

But then the Mach numbers would differ by a factor of 10. At 25°C, c is

approximately 346 m/s, and the Mach number of the prototype airplane wing

is Map � 52.0/346 � 0.150—subsonic. At the required wind tunnel speed,

Mam would be 1.50—supersonic! This is clearly unacceptable since the

physics of the flow changes dramatically from subsonic to supersonic condi-

tions. At the other extreme, if we were to match Mach numbers, the

Reynolds number of the model would be 10 times too small.

What should we do? A common rule of thumb is that for Mach numbers

less than about 0.3, as is the fortunate case here, compressibility effects are

practically negligible. Thus, it is not necessary to exactly match the Mach

number; rather, as long as Mam is kept below about 0.3, approximate

dynamic similarity can be achieved by matching the Reynolds number. Now

the problem shifts to one of how to match Re while maintaining a low Mach

number. This is where the pressurization feature of the wind tunnel comes

in. At constant temperature, density is proportional to pressure, while viscos-

ity and speed of sound are very weak functions of pressure. If the wind tun-

nel pressure could be pumped to 10 atm, we could run the model test at the

CL �
FL

1
2rV

2A
� f˛(Re, Ma, a)

�4 � a � Angle of attack

�3 �
V

c
� Mach number � Ma

�2, modified �
rVLc

m
� Reynolds number � Re

�2 �
m

rVLc

�2 � mV˛˛

a2Lb2
c r

c2 →  {�2} � {(m1L�1t�1)(L1t�1)a2(L1)b2(m1L�3)c2}

293
CHAPTER 7

A parameter that is already 

dimensionless becomes a � 

parameter all by itself.

FIGURE 7–33

A parameter that is dimensionless

(like an angle) is already a

nondimensional � all by itself—

we know this � without doing 

any further algebra.
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same speed as the prototype and achieve a nearly perfect match in both Re

and Ma. However, at the maximum wind tunnel pressure of 5 atm, the

required wind tunnel speed would be twice that of the prototype, or 104

m/s. The Mach number of the wind tunnel model would thus be Mam �

104/346 � 0.301—approximately at the limit of incompressibility according

to our rule of thumb. In summary, the wind tunnel should be run at approxi-

mately 100 m/s, 5 atm, and 25°C.

Discussion This example illustrates one of the (frustrating) limitations of

dimensional analysis; namely, You may not always be able to match all the

dependent �’s simultaneously in a model test. Compromises must be made

in which only the most important �’s are matched. In many practical situa-

tions in fluid mechanics, the Reynolds number is not critical for dynamic

similarity, provided that Re is high enough. If the Mach number of the proto-

type were significantly larger than about 0.3, we would be wise to precisely

match the Mach number rather than the Reynolds number in order to ensure

reasonable results. Furthermore, if a different gas were used to test the

model, we would also need to match the specific heat ratio (k), since com-

pressible flow behavior is strongly dependent on k (Chap. 12). We discuss

such model testing problems in more detail in Section 7–5.

We return to Examples 7–5 and 7–6. Recall that the air speed of the pro-

totype car is 50.0 mi/h, and that of the wind tunnel is 224 mi/h. At 25°C,

this corresponds to a prototype Mach number of Map � 0.065, and at 5°C,

the Mach number of the wind tunnel is 0.29—on the borderline of the

incompressible limit. In hindsight, we should have included the speed of

sound in our dimensional analysis, which would have generated the Mach

number as an additional �. Another way to match the Reynolds number

while keeping the Mach number low is to use a liquid such as water, since

liquids are nearly incompressible, even at fairly high speeds.

EXAMPLE 7–9 Friction in a Pipe

Consider flow of an incompressible fluid of density r and viscosity m through

a long, horizontal section of round pipe of diameter D. The velocity profile is

sketched in Fig. 7–34; V is the average speed across the pipe cross section,

which by conservation of mass remains constant down the pipe. For a very

long pipe, the flow eventually becomes fully developed, which means that the

velocity profile also remains uniform down the pipe. Because of frictional

forces between the fluid and the pipe wall, there exists a shear stress tw on

the inside pipe wall as sketched. The shear stress is also constant down the

pipe in the fully developed region. We assume some constant average rough-

ness height � along the inside wall of the pipe. In fact, the only parameter

that is not constant down the length of pipe is the pressure, which must

decrease (linearly) down the pipe in order to “push” the fluid through the

pipe to overcome friction. Develop a nondimensional relationship between

shear stress tw and the other parameters in the problem.

SOLUTION We are to generate a nondimensional relationship between shear

stress and other parameters.
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tw

V

D

e

r, m

FIGURE 7–34

Friction on the inside wall of a pipe.

The shear stress tw on the pipe walls 

is a function of average fluid speed V,

average wall roughness height �, fluid

density r, fluid viscosity m, and inside

pipe diameter D.
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Assumptions 1 The flow is fully developed. 2 The fluid is incompressible. 3

No other parameters are significant in the problem.

Analysis The step-by-step method of repeating variables is employed to

obtain the nondimensional parameters.

Step 1 There are six variables and constants in this problem; n � 6. They

are listed in functional form, with the dependent variable listed as a

function of the independent variables and constants:

List of relevant parameters:

Step 2 The primary dimensions of each parameter are listed. Note that

shear stress is a force per unit area, and thus has the same dimensions as

pressure.

Step 3 As a first guess, j is set equal to 3, the number of primary

dimensions represented in the problem (m, L, and t).

Reduction: j � 3

If this value of j is correct, the expected number of �’s is k � n � j � 6 �

3 � 3.

Step 4 We choose three repeating parameters since j � 3. Following the

guidelines of Table 7–3, we cannot pick the dependent variable tw. We

cannot choose both � and D since their dimensions are identical, and it

would not be desirable to have m or � appear in all the �’s. The best choice

of repeating parameters is thus V, D, and r.

Repeating parameters:

Step 5 The dependent � is generated:

from which a1 � �2, b1 � 0, and c1 � �1, and thus the dependent � is

From Table 7–5, the established nondimensional parameter most similar to

this �1 is the Darcy friction factor, defined with a factor of 8 in the

numerator (Fig. 7–35). Thus, we may manipulate this � according to the

guidelines listed in Table 7–4 as follows:

Modified �1:

Similarly, the two independent �’s are generated, the details of which are

left for the reader:

 �3 � eV˛

a3Db3rc3 →  �3 �
e

D
� Roughness ratio 

 �2 � mV˛

a2Db2rc2 →  �2 �
rVD

m
� Reynolds number � Re

�1, modified �
8tw

rV˛

2
� Darcy friction factor � f

�1 �
tw

rV˛˛

2

�1 � twV˛˛

a1Db1rc1 →  {�1} � {(m1L�1t�2)(L1t�1)a1(L1)b1(m1L�3)c1}

V, D, and r

tw V e r m D

{m1L�1t�2} {L1t�1} {L1} {m1L�3} {m1L�1t�1} {L1}

tw � f (V, e, r, m, D)  n � 6
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Darcy friction factor:

Fanning friction factor:

tw

r

V

8tw

rV2
f =

2tw

rV2
Cf =

FIGURE 7–35

Although the Darcy friction factor

for pipe flows is most common, you

should be aware of an alternative,

less common friction factor called 

the Fanning friction factor. The

relationship between the two is 

f � 4Cf .
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Step 6 We write the final functional relationship as

(1)

Discussion The result applies to both laminar and turbulent fully developed

pipe flow; it turns out, however, that the second independent � (roughness

ratio �/D) is not nearly as important in laminar pipe flow as in turbulent pipe

flow. This problem presents an interesting connection between geometric

similarity and dimensional analysis. Namely, it is necessary to match �/D

since it is an independent � in the problem. From a different perspective,

thinking of roughness as a geometric property, it is necessary to match �/D

to ensure geometric similarity between two pipes.

To verify the validity of Eq. 1 of Example 7–9, we use computational

fluid dynamics (CFD) to predict the velocity profiles and the values of wall

shear stress for two physically different but dynamically similar pipe flows:

• Air at 300 K flowing at an average speed of 14.5 ft/s through a pipe of

inner diameter 1.00 ft and average roughness height 0.0010 ft.

• Water at 300 K flowing at an average speed of 3.09 m/s through a pipe of

inner diameter 0.0300 m and average roughness height 0.030 mm.

The two pipes are clearly geometrically similar since they are both round

pipes. They have the same average roughness ratio (�/D � 0.0010 in both

cases). We have carefully chosen the values of average speed and diameter

such that the two flows are also dynamically similar. Specifically, the other

independent � (the Reynolds number) also matches between the two flows.

where the fluid properties are those built into the CFD code, and

Hence by Eq. 7–12, we expect that the dependent �’s should match

between the two flows as well. We generate a computational mesh for each

of the two flows, and use a commercial CFD code to generate the velocity

profile, from which the shear stress is calculated. Fully developed, time-

averaged, turbulent velocity profiles near the far end of both pipes are com-

pared. Although the pipes are of different diameters and the fluids are vastly

different, the velocity profile shapes look quite similar. In fact, when we

plot normalized axial velocity (u/V) as a function of normalized radius (r/R),

we find that the two profiles fall on top of each other (Fig. 7–36).

Wall shear stress is also calculated from the CFD results for each flow, a

comparison of which is shown in Table 7–6. There are several reasons why

the wall shear stress in the water pipe is orders of magnitude larger than that

in the air pipe. Namely, water is over 800 times as dense as air and over 50

times as viscous. Furthermore, shear stress is proportional to the gradient of

velocity, and the water pipe diameter is less than one-tenth that of the air

Rewater �
rwaterVwater˛

Dwater

mwater

�
(998.2 kg/m3)(3.09 m/s)(0.0300 m)

 0.001003 kg/m � s
 � 9.22 � 104

Reair �
rairVair˛

Dair

mair

�
(1.225 kg/m3)(14.5 ft/s)(1.00 ft)

 1.789 � 10�5 kg/m � s
 ¢0.3048 m

ft
≤ 2

� 9.22 � 104

f �
8Tw

RV 2
� f aRe, 

E

D
≤
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r/R

0

0 0.5 1 1.5

u/V

0.2

0.4

0.6

0.8

1

1.2

FIGURE 7–36

Normalized axial velocity profiles for

fully developed flow through a pipe 

as predicted by CFD; profiles of air

(circles) and water (crosses) are 

shown on the same plot.
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pipe, leading to steeper velocity gradients. In terms of the nondimensional-

ized wall shear stress, f, however, Table 7–6 shows that the results are iden-

tical due to dynamic similarity between the two flows. Note that although

the values are reported to three significant digits, the reliability of turbu-

lence models in CFD is accurate to at most two significant digits (Chap. 15).

7–5 � EXPERIMENTAL TESTING
AND INCOMPLETE SIMILARITY

One of the most useful applications of dimensional analysis is in designing

physical and/or numerical experiments, and in reporting the results of such

experiments. In this section we discuss both of these applications, and point

out situations in which complete dynamic similarity is not achievable.

Setup of an Experiment and Correlation 

of Experimental Data
As a generic example, consider a problem in which there are five original

parameters (one of which is the dependent parameter). A complete set of

experiments (called a full factorial test matrix) is conducted by testing

every possible combination of several levels of each of the four independent

parameters. A full factorial test with five levels of each of the four indepen-

dent parameters would require 54 � 625 experiments. While experimental

design techniques (fractional factorial test matrices; see Montgomery,

1996) can significantly reduce the size of the test matrix, the number of

required experiments would still be large. However, assuming that three pri-

mary dimensions are represented in the problem, we can reduce the number

of parameters from five to two (k � 5 � 3 � 2 nondimensional � groups),

and the number of independent parameters from four to one. Thus, for the

same resolution (five tested levels of each independent parameter) we would

then need to conduct a total of only 51 � 5 experiments. You don’t have to

be a genius to realize that replacing 625 experiments by 5 experiments is

cost effective. You can see why it is wise to perform a dimensional analysis

before conducting an experiment.

Continuing our discussion of this generic example (a two-� problem),

once the experiments are complete, we plot the dependent dimensionless para-

meter (�1) as a function of the independent dimensionless parameter (�2), as

in Fig. 7–37. We then determine the functional form of the relationship by
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TABLE 7–6

Comparison of wall shear stress and nondimensionalized wall shear stress for

fully developed flow through an air pipe and a water pipe as predicted by CFD*

Parameter Air Flow Water Flow

Wall shear stress

Dimensionless wall

shear stress

(Darcy friction factor)

* Data obtained with FLUENT using the standard k-� turbulence model with wall functions.

fwater �
8tw, water

rwaterV
2
water

� 0.0186fair �
8tw, air

rairV
2
air

� 0.0186

tw, water � 22.2 N/m2tw, air � 0.0557 N/m2

�1

(a)

�2

�1

(b)

�2

FIGURE 7–37

For a two-� problem, we plot

dependent dimensionless parameter

(�1) as a function of independent

dimensionless parameter (�2). The

resulting plot can be (a) linear or

(b) nonlinear. In either case, regression

and curve-fitting techniques are

available to determine the relationship

between the �’s.
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performing a regression analysis on the data. If we are lucky, the data may

correlate linearly. If not, we can try linear regression on log–linear or

log–log coordinates, polynomial curve fitting, etc., to establish an approxi-

mate relationship between the two �’s. See Holman (2001) for details about

these curve-fitting techniques.

If there are more than two �’s in the problem (e.g., a three-� problem or

a four-� problem), we need to set up a test matrix to determine the relation-

ship between the dependent � and the independent �’s. In many cases we

discover that one or more of the dependent �’s has negligible effect and can

be removed from the list of necessary dimensionless parameters.

As we have seen (Example 7–7), dimensional analysis sometimes yields

only one �. In a one-� problem, we know the form of the relationship

between the original parameters to within some unknown constant. In such

a case, only one experiment is needed to determine that constant.

Incomplete Similarity
We have shown several examples in which the nondimensional � groups

are easily obtained with paper and pencil through straightforward use of the

method of repeating variables. In fact, after sufficient practice, you should

be able to obtain the �’s with ease—sometimes in your head or on the

“back of an envelope.” Unfortunately, it is often a much different story

when we go to apply the results of our dimensional analysis to experimental

data. The problem is that it is not always possible to match all the �’s of a

model to the corresponding �’s of the prototype, even if we are careful to

achieve geometric similarity. This situation is called incomplete similarity.

Fortunately, in some cases of incomplete similarity, we are still able to

extrapolate model tests to obtain reasonable full-scale predictions.

Wind Tunnel Testing
We illustrate incomplete similarity with the problem of measuring the aero-

dynamic drag force on a model truck in a wind tunnel (Fig. 7–38). Suppose

we purchase a one-sixteenth scale die-cast model of a tractor-trailer rig (18-

wheeler). The model is geometrically similar to the prototype—even in the

details such as side mirrors, mud flaps, etc. The model truck is 0.991 m

long, corresponding to a full-scale prototype length of 15.9 m. The model

truck is to be tested in a wind tunnel that has a maximum speed of 70 m/s.

The wind tunnel test section is 1.0 m tall and 1.2 m wide—big enough to

accommodate the model without needing to worry about wall interference

or blockage effects. The air in the wind tunnel is at the same temperature

and pressure as the air flowing around the prototype. We want to simulate

flow at Vp � 60 mi/h (26.8 m/s) over the full-scale prototype truck.

The first thing we do is match the Reynolds numbers,

which can be solved for the required wind tunnel speed for the model tests Vm,

Vm � Vp¢mm

mp

≤ ¢rp

rm

≤ ¢Lp

Lm

≤ � (26.8 m/s)(1)(1)¢16

1
≤ � 429 m/s

Rem �
rmVmLm

mm

� Rep �
rpVpLp

mp
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Model

Moving belt Drag balance

FD

V

Wind tunnel test section

FIGURE 7–38

Measurement of aerodynamic drag 

on a model truck in a wind tunnel

equipped with a drag balance and 

a moving belt ground plane.
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Thus, to match the Reynolds number between model and prototype, the

wind tunnel should be run at 429 m/s (to three significant digits). We obvi-

ously have a problem here, since this speed is more than six times greater

than the maximum achievable wind tunnel speed. Moreover, even if we

could run the wind tunnel that fast, the flow would be supersonic, since the

speed of sound in air at room temperature is about 346 m/s. While the Mach

number of the prototype truck moving through the air is 26.8/335 � 0.080,

that of the wind tunnel air moving over the model would be 429/335 � 1.28

(if the wind tunnel could go that fast).

It is clearly not possible to match the model Reynolds number to that of

the prototype with this model and wind tunnel facility. What do we do?

There are several options:

• If we had a bigger wind tunnel, we could test with a larger model.

Automobile manufacturers typically test with three-eighths scale model

cars and with one-eighth scale model trucks and buses in very large wind

tunnels. Some wind tunnels are even large enough for full-scale

automobile tests (Fig. 7–39). As you can imagine, however, the bigger the

wind tunnel and the model the more expensive the tests. We must also be

careful that the model is not too big for the wind tunnel. A useful rule of

thumb is that the blockage (ratio of the model frontal area to the cross-

sectional area of the test section) should be less than 7.5 percent.

Otherwise, the wind tunnel walls adversely affect both geometric and

kinematic similarity.

• We could use a different fluid for the model tests. For example, water

tunnels can achieve higher Reynolds numbers than can wind tunnels of

the same size, but they are much more expensive to build and operate.

• We could pressurize the wind tunnel and/or adjust the air temperature to

increase the maximum Reynolds number capability. While these

techniques can help, the increase in the Reynolds number is limited.

• If all else fails, we could run the wind tunnel at several speeds near the

maximum speed, and then extrapolate our results to the full-scale

Reynolds number.

Fortunately, it turns out that for many wind tunnel tests the last option is

quite viable. While drag coefficient CD is a strong function of the Reynolds

number at low values of Re, CD often levels off for Re above some value. In

other words, for flow over many objects, especially “bluff” objects like

trucks, buildings, etc., the flow is Reynolds number independent above

some threshold value of Re (Fig. 7–40), typically when the boundary layer

and the wake are both fully turbulent.

EXAMPLE 7–10 Model Truck Wind Tunnel Measurements

A one-sixteenth scale model tractor-trailer truck (18-wheeler) is tested in a

wind tunnel as sketched in Fig. 7–38. The model truck is 0.991 m long,

0.257 m tall, and 0.159 m wide. During the tests, the moving ground belt

speed is adjusted so as to always match the speed of the air moving through

the test section. Aerodynamic drag force FD is measured as a function of
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FIGURE 7–39

The Langley full-scale wind tunnel

(LFST) is large enough that full-scale

vehicles can be tested.

Courtesy NASA Langley Research Center.

CD

Re
Unreliable data at low Re

Re
independence

FIGURE 7–40

For many objects, the drag coefficient

levels off at Reynolds numbers above

some threshold value. This fortunate

situation is called Reynolds number

independence. It enables us to

extrapolate to prototype Reynolds

numbers that are outside of the 

range of our experimental facility.
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wind tunnel speed; the experimental results are listed in Table 7–7. Plot the

drag coefficient CD as a function of the Reynolds number Re, where the area

used for the calculation of CD is the frontal area of the model truck (the area

you see when you look at the model from upstream), and the length scale

used for calculation of Re is truck width W. Have we achieved dynamic sim-

ilarity? Have we achieved Reynolds number independence in our wind tunnel

test? Estimate the aerodynamic drag force on the prototype truck traveling on

the highway at 26.8 m/s. Assume that both the wind tunnel air and the air

flowing over the prototype car are at 25°C and standard atmospheric pressure.

SOLUTION We are to calculate and plot CD as a function of Re for a given

set of wind tunnel measurements and determine if dynamic similarity and/or

Reynolds number independence have been achieved. Finally, we are to esti-

mate the aerodynamic drag force acting on the prototype truck.

Assumptions 1 The model truck is geometrically similar to the prototype

truck. 2 The aerodynamic drag on the strut(s) holding the model truck is

negligible.

Properties For air at atmospheric pressure and at T � 25°C, r � 1.184

kg/m3 and m � 1.849 � 10�5 kg/m · s.

Analysis We calculate CD and Re for the last data point listed in Table 7–7

(at the fastest wind tunnel speed),

and

(1)

We repeat these calculations for all the data points in Table 7–7, and we

plot CD versus Re in Fig. 7–41.

Have we achieved dynamic similarity? Well, we have geometric similarity

between model and prototype, but the Reynolds number of the prototype

truck is

(2)

where the width of the prototype is specified as 16 times that of the model.

Comparison of Eqs. 1 and 2 reveals that the prototype Reynolds number is

more than six times larger than that of the model. Since we cannot match

the independent �’s in the problem, dynamic similarity has not been achieved.

Have we achieved Reynolds number independence? From Fig. 7–41 we

see that Reynolds number independence has indeed been achieved—at Re

greater than about 5 � 105, CD has leveled off to a value of about 0.76 (to

two significant digits).

Since we have achieved Reynolds number independence, we can extrapo-

late to the full-scale prototype, assuming that CD remains constant as Re is

increased to that of the full-scale prototype.

Rep �
rpVpWp

mp

�
(1.184 kg/m3)(26.8 m/s) 316(0.159 m)4

1.849 �  10�5 kg/m � s
� 4.37 �  106

Rem �
rmVmWm

mm

�
(1.184 kg/m3)(70 m/s)(0.159 m)

1.849 �  10�5 kg/m � s
� 7.13 �  105

 � 0.758 

CD, m �
FD, m

1
2 ˛ rmV˛

2
m Am

�
89.9 N

1
2(1.184 kg/m3)(70 m/s)2(0.159 m)(0.257 m)

 ¢1 kg � m/s2

1 N
≤
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TABLE 7–7

Wind tunnel data: aerodynamic drag

force on a model truck as a function

of wind tunnel speed

V, m/s FD, N

20 12.4

25 19.0

30 22.1

35 29.0

40 34.3

45 39.9

50 47.2

55 55.5

60 66.0

65 77.6

70 89.9

CD

0.6

2 76543 8

Re � 10–5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

FIGURE 7–41

Aerodynamic drag coefficient as a

function of the Reynolds number. The

values are calculated from wind tunnel

test data on a model truck (Table 7–7).
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Predicted aerodynamic drag on the prototype:

Discussion We give our final result to two significant digits. More than that

cannot be justified. As always, we must exercise caution when performing an

extrapolation, since we have no guarantee that the extrapolated results are

correct.

Flows with Free Surfaces
For the case of model testing of flows with free surfaces (boats and ships,

floods, river flows, aqueducts, hydroelectric dam spillways, interaction of

waves with piers, soil erosion, etc.), complications arise that preclude com-

plete similarity between model and prototype. For example, if a model river

is built to study flooding, the model is often several hundred times smaller

than the prototype due to limited lab space. If the vertical dimensions of the

model were scaled proportionately, the depth of the model river would be so

small that surface tension effects (and the Weber number) would become

important, and would perhaps even dominate the model flow, even though

surface tension effects are negligible in the prototype flow. In addition,

although the flow in the actual river may be turbulent, the flow in the model

river may be laminar, especially if the slope of the riverbed is geometrically

similar to that of the prototype. To avoid these problems, researchers often

use a distorted model in which the vertical scale of the model (e.g., river

depth) is exaggerated in comparison to the horizontal scale of the model

(e.g., river width). In addition, the model riverbed slope is often made pro-

portionally steeper than that of the prototype. These modifications result in

incomplete similarity due to lack of geometric similarity. Model tests are

still useful under these circumstances, but other tricks (like deliberately

roughening the model surfaces) and empirical corrections and correlations

are required to properly scale up the model data.

In many practical problems involving free surfaces, both the Reynolds

number and Froude number appear as relevant independent � groups in the

dimensional analysis (Fig. 7–42). It is difficult (often impossible) to match

both of these dimensionless parameters simultaneously. For a free-surface

flow with length scale L, velocity scale V, and kinematic viscosity n, the

Reynolds number is matched between model and prototype when

(7–21)

The Froude number is matched between model and prototype when

(7–22)Frp �
Vp

2gLp

� Frm �
Vm

2gLm

Rep �
Vp Lp

np
� Rem �

Vm Lm

nm

 � 3400 N 

 � 1
2 (1.184 kg/m3)(26.8 m/s)2 3162(0.159 m)(0.257 m)4(0.76)¢ 1 N

1 kg � m/s2
≤

 FD, p � 1
2 rpV˛

2
p ApCD, p 

301
CHAPTER 7

Re = =

g

L

V

n

r, m

m

rVL VL
Fr =

gL

V

→

2

FIGURE 7–42

In many flows involving a liquid with

a free surface, both the Reynolds

number and Froude number are

relevant nondimensional parameters.

Since it is not always possible to match

both Re and Fr between model and

prototype, we are sometimes forced 

to settle for incomplete similarity. 
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To match both Re and Fr, we solve Eqs. 7–21 and 7–22 simultaneously for

the required length scale factor Lm/Lp,

(7–23)

Eliminating the ratio Vm/Vp from Eq. 7–23, we see that

Required ratio of kinematic viscosities to match both Re and Fr:

(7–24)

Thus, to ensure complete similarity (assuming geometric similarity is

achievable without unwanted surface tension effects as discussed previ-

ously), we would need to use a liquid whose kinematic viscosity satisfies

Eq. 7–24. Although it is sometimes possible to find an appropriate liquid for

use with the model, in most cases it is either impractical or impossible, as

Example 7–11 illustrates.

EXAMPLE 7–11 Model Lock and River

In the late 1990s the U.S. Army Corps of Engineers designed an experiment

to model the flow of the Tennessee River downstream of the Kentucky Lock

and Dam (Fig. 7–43). Because of laboratory space restrictions, they built a

scale model with a length scale factor of Lm /Lp � 1/100. Suggest a liquid

that would be appropriate for the experiment.

SOLUTION We are to suggest a liquid to use in an experiment involving a

one-hundredth scale model of a lock, dam, and river.

Assumptions 1 The model is geometrically similar to the prototype. 2 The

model river is deep enough that surface tension effects are not significant.

Properties For water at atmospheric pressure and at T = 20oC, the pro-

totype kinematic viscosity is np = 1.002 � 10�6 m2/s.

Analysis From Eq. 7–24,

Required kinematic viscosity of model liquid:

(1)

Thus, we need to find a liquid that has a viscosity of 1.00 � 10�9 m2/s. A

quick glance through the appendices yields no such liquid. Hot water has a

lower kinematic viscosity than cold water, but only by about a factor of 3.

Liquid mercury has a very small kinematic viscosity, but it is of order 10�7

m2/s—still two orders of magnitude too large to satisfy Eq. 1. Even if liquid

mercury would work, it would be too expensive and too hazardous to use in

such a test. What do we do? The bottom line is that we cannot match both

the Froude number and the Reynolds number in this model test. In other

words, it is impossible to achieve complete similarity between model and

prototype in this case. Instead, we do the best job we can under conditions

of incomplete similarity. Water is typically used in such tests for conve-

nience.

nm � np¢Lm

Lp

≤ 3/2

� (1.002 � 10�6 m2/s)¢ 1

100
≤ 3/2

� 1.00 � 10�9 m2/s

nm

np
� ¢Lm

Lp

≤ 3/2

Lm

Lp

�
nm

np
 
Vp

Vm

� ¢Vm

Vp

≤ 2
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Discussion It turns out that for this kind of experiment, Froude number

matching is more critical than Reynolds number matching. As discussed pre-

viously for wind tunnel testing, Reynolds number independence is achieved

at high enough values of Re. Even if we are unable to achieve Reynolds

number independence, we can often extrapolate our low Reynolds number

model data to predict full-scale Reynolds number behavior (Fig. 7–44). A

high level of confidence in using this kind of extrapolation comes only after

much laboratory experience with similar problems.

In closing this section on experiments and incomplete similarity, we men-

tion the importance of similarity in the production of Hollywood movies in

which model boats, trains, airplanes, buildings, monsters, etc., are blown up

or burned. Movie producers must pay attention to dynamic similarity in

order to make the small-scale fires and explosions appear as realistic as pos-

sible. You may recall some low-budget movies where the special effects are

unconvincing. In most cases this is due to lack of dynamic similarity

between the small model and the full-scale prototype. If the model’s Froude

number and/or Reynolds number differ too much from those of the proto-

type, the special effects don’t look right, even to the untrained eye. The next

time you watch a movie, be on the alert for incomplete similarity!
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FIGURE 7–43

A 1:100 scale model constructed to

investigate navigation conditions in

the lower lock approach for a distance

of 2 mi downstream of the dam. The

model includes a scaled version of the

spillway, powerhouse, and existing

lock. In addition to navigation,

the model was used to evaluate

environmental issues associated with

the new lock and required railroad 

and highway bridge relocations. The

view here is looking upstream toward

the lock and dam. At this scale, 52.8 ft

on the model represents 1 mi on the

prototype. A pickup truck in the

background gives you a feel for the

model scale.

Photo courtesy of the U.S. Army Corps of

Engineers, Nashville.

Measured
parameter

ReRep
Range of Rem

Extrapolated
result

FIGURE 7–44

In many experiments involving free

surfaces, we cannot match both the

Froude number and the Reynolds

number. However, we can often

extrapolate low Re model test data to

predict high Re prototype behavior.

cen72367_ch07.qxd  10/29/04  2:28 PM  Page 303



304
FLUID MECHANICS

Guest Author: Michael Dickinson,
California Institute of Technology

An interesting application of dimensional analysis is in the study of how

insects fly. The small size and fast wing speed of an insect, such as a tiny

fruit fly, make it difficult to measure the forces or visualize the air motion

created by the fly’s wings directly. However, using principles of dimensional

analysis, it is possible to study insect aerodynamics on a larger-scale, slowly

moving model—a mechanical robot. The forces created by a hovering fly

and flapping robot are dynamically similar if the Reynolds number is the

same for each case. For a flapping wing, Re is calculated as 2
RLcv/n,

where 
 is the angular amplitude of the wing stroke, R is the wing length, Lc

is the average wing width (chord length), v is the angular frequency of the

stroke, and n is the kinematic viscosity of the surrounding fluid. A fruit fly

flaps its 2.5-mm-long, 0.7-mm-wide wings 200 times per second over a 2.8-

rad stroke in air with a kinematic viscosity of 1.5 � 10�5 m2/s. The resulting

Reynolds number is approximately 130. By choosing mineral oil with a kine-

matic viscosity of 1.15 � 10�4 m2/s, it is possible to match this Reynolds

number on a robotic fly that is 100 times larger, flapping its wings over 1000

times more slowly! If the fly is not stationary, but rather moving through the

air, it is necessary to match another dimensionless parameter to ensure

dynamic similarity, the reduced frequency, s � 2
Rv/V, which measures

the ratio of the flapping velocity of the wing tip (2
Rv) to the forward

velocity of the body (V). To simulate forward flight, a set of motors tows

Robofly through its oil tank at an appropriately scaled speed.

Dynamically scaled robots have helped show that insects use a variety of

different mechanisms to produce forces as they fly. During each back-and-

forth stroke, insect wings travel at high angles of attack, generating a promi-

nent leading-edge vortex. The low pressure of this large vortex pulls the

wings upward. Insects can further augment the strength of the leading-edge

vortex by rotating their wings at the end of each stroke. After the wing

changes direction, it can also generate forces by quickly running through the

wake of the previous stroke.

Figure 7–45a shows a real fly flapping its wings, and Fig. 7–45b shows

Robofly flapping its wings. Because of the larger length scale and shorter

time scale of the model, measurements and flow visualizations are possible.

Experiments with dynamically scaled model insects continue to teach

researchers how insects manipulate wing motion to steer and maneuver.
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APPLICATION SPOTLIGHT � How a Fly Flies

FIGURE 7–45

(a) The fruit fly, Drosophila

melanogaster, flaps its tiny wings

back and forth 200 times a second,

creating a blurred image of the stroke

plane. (b) The dynamically scaled

model, Robofly, flaps its wings once

every 5 s in 2 tons of mineral oil.

Sensors at the base of the wings 

record aerodynamic forces, while 

fine bubbles are used to visualize 

flow. The size and speed of the robot,

as well as the properties of the oil,

were carefully chosen to match the

Reynolds number of a real fly.

(a)

(b)
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SUMMARY

There is a difference between dimensions and units; a dimen-

sion is a measure of a physical quantity (without numerical

values), while a unit is a way to assign a number to that dimen-

sion. There are seven primary dimensions—not just in fluid

mechanics, but in all fields of science and engineering. They

are mass, length, time, temperature, electric current, amount of

light, and amount of matter. All other dimensions can be

formed by combination of these seven primary dimensions.

All mathematical equations must be dimensionally homo-

geneous; this fundamental principle can be applied to equa-

tions in order to nondimensionalize them and to identify

dimensionless groups, also called nondimensional parame-

ters. A powerful tool to reduce the number of necessary inde-

pendent parameters in a problem is called dimensional analy-

sis. The method of repeating variables is a step-by-step

procedure for finding the nondimensional parameters, or �’s,

based simply on the dimensions of the variables and con-

stants in the problem. The six steps in the method of repeat-

ing variables are summarized here.

Step 1 List the n parameters (variables and constants)

in the problem.

Step 2 List the primary dimensions of each parameter.

Step 3 Guess the reduction j, usually equal to the num-

ber of primary dimensions in the problem. If the analysis

does not work out, reduce j by one and try again. The

expected number of �’s (k) is equal to n minus j.

Step 4 Wisely choose j repeating parameters for con-

struction of the �’s.

Step 5 Generate the k �’s one at a time by grouping

the j repeating parameters with each of the remaining

variables or constants, forcing the product to be dimen-

sionless, and manipulating the �’s as necessary to

achieve established nondimensional parameters.

Step 6 Check your work and write the final functional

relationship.

When all the dimensionless groups match between a model

and a prototype, dynamic similarity is achieved, and we are

able to directly predict prototype performance based on

model experiments. However, it is not always possible to

match all the � groups when trying to achieve similarity

between a model and a prototype. In such cases, we run the

model tests under conditions of incomplete similarity, match-

ing the most important � groups as best we can, and then

extrapolating the model test results to prototype conditions.

We use the concepts presented in this chapter throughout

the remainder of the book. For example, dimensional analysis

is applied to fully developed pipe flows in Chap. 8 (friction

factors, loss coefficients, etc.). In Chap. 10, we normalize the

differential equations of fluid flow derived in Chap. 9, produc-

ing several dimensionless parameters. Drag and lift coeffi-

cients are used extensively in Chap. 11, and dimensionless

parameters also appear in the chapters on compressible flow

and open-channel flow (Chaps. 12 and 13). We learn in Chap.

14 that dynamic similarity is often the basis for design and

testing of pumps and turbines. Finally, dimensionless parame-

ters are also used in computations of fluid flows (Chap. 15).

REFERENCES AND SUGGESTED READING
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PROBLEMS*

Dimensions and Units, Primary Dimensions

7–1C What is the difference between a dimension and a

unit? Give three examples of each.

7–2C When performing a dimensional analysis, one of the

first steps is to list the primary dimensions of each relevant

parameter. It is handy to have a table of parameters and their

primary dimensions. We have started such a table for you

(Table P7–2C), in which we have included some of the basic

parameters commonly encountered in fluid mechanics. As

you work through homework problems in this chapter, add to

this table. You should be able to build up a table with dozens

of parameters.

* Problems designated by a “C” are concept questions, and

students are encouraged to answer them all. Problems designated

by an “E” are in English units, and the SI users can ignore them.

Problems with the icon are solved using EES, and complete

solutions together with parametric studies are included on the

enclosed DVD. Problems with the icon are comprehensive in

nature and are intended to be solved with a computer, preferably

using the EES software that accompanies this text.
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7–3C List the seven primary dimensions. What is signifi-

cant about these seven?

7–4 Write the primary dimensions of the universal ideal gas

constant Ru. (Hint: Use the ideal gas law, P � nRuT where

P is pressure, is volume, T is absolute temperature, and n is

the number of moles of the gas.) Answer: {m1L2t�2T�1N�1}

7–5 On a periodic chart of the elements, molar mass (M),

also called atomic weight, is often listed as though it were a

dimensionless quantity (Fig. P7–5). In reality, atomic weight

is the mass of 1 mol of the element. For example, the atomic

weight of nitrogen Mnitrogen � 14.0067. We interpret this as

14.0067 g/mol of elemental nitrogen, or in the English sys-

tem, 14.0067 lbm/lbmol of elemental nitrogen. What are the

primary dimensions of atomic weight?

V

V
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Ru/M. For a particular gas, then, the ideal gas law can be

written as follows:

where P is pressure, is volume, m is mass, T is absolute

temperature, and r is the density of the particular gas. What are

the primary dimensions of Rgas? For air, Rair � 287.0 J/kg · K in

standard SI units. Verify that these units agree with your result.

7–8 The moment of force (M
→

) is formed by the cross product

of a moment arm (r
→

) and an applied force (F
→

), as sketched in

Fig. P7–8. What are the primary dimensions of moment of

force? List its units in primary SI units and in primary Eng-

lish units.

V

PV � mRgasT  or  P � rRgasT

TABLE P7–2C

Parameter Parameter Primary

Name Symbol Dimensions

Acceleration a L1t�2

Angle u, f, etc. 1 (none)

Density r m1L�3

Force F m1L1t�2

Frequency f t�1

Pressure P m1L�1t�2

Surface tension ss m1t�2

Velocity V L1t�1

Viscosity m m1L�1t�1

Volume flow rate L3t�1V
#

7

N
14.0067

8

O
15.9994

6

C
12.011

15

P
30.9738

16

S
32.060

14

Si
28.086

FIGURE P7–5

7–6 Some authors prefer to use force as a primary dimen-

sion in place of mass. In a typical fluid mechanics problem,

then, the four represented primary dimensions m, L, t, and T

are replaced by F, L, t, and T. The primary dimension of

force in this system is {force} � {F}. Using the results of

Prob. 7–4, rewrite the primary dimensions of the universal

gas constant in this alternate system of primary dimensions.

7–7 We define the specific ideal gas constant Rgas for a par-

ticular gas as the ratio of the universal gas constant and the

molar mass (also called molecular weight) of the gas, Rgas �

F

M = r � F

Point O

r

→

→

→→ →

FIGURE P7–8

7–9 Write the primary dimensions of each of the following

variables from the field of thermodynamics, showing all your

work: (a) energy E; (b) specific energy e � E/m; (c) power W
.

.

Answers: (a) {m1L2t�2}; (b) {L2t�2}; (c) {m1L2t�3}

7–10 What are the primary dimensions of electric voltage

(E)? (Hint: Make use of the fact that electric power is equal

to voltage times current.)

7–11 You are probably familiar with Ohm’s law for electric

circuits (Fig. P7–11), where �E is the voltage difference or

potential across the resistor, I is the electric current passing

through the resistor, and R is the electrical resistance. What

are the primary dimensions of electrical resistance? Answer:

{m1L2t�3I�2}

I

R

∆E � IR

FIGURE P7–11

7–12 Write the primary dimensions of each of the follow-

ing variables, showing all your work: (a) acceleration a; (b)

angular velocity v; (c) angular acceleration a.

7–13 Angular momentum, also called moment of momentum

(H
→

), is formed by the cross product of a moment arm (r
→

) and
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the linear momentum (mV
→

) of a fluid particle, as sketched in

Fig. P7–13. What are the primary dimensions of angular

momentum? List the units of angular momentum in primary

SI units and in primary English units. Answers: {m1L2t�1},

kg · m2/s, lbm · m2/s, lbm · ft2/s

P7–16), showing all your work: (a) heat generation rate g
.

(Hint: rate of conversion of thermal energy per unit volume);

(b) heat flux q
.

(Hint: rate of heat transfer per unit area); (c) heat

transfer coefficient h (Hint: heat flux per unit temperature

difference).

7–17 Thumb through the appendices of your thermodynam-

ics book, and find three properties or constants not mentioned

in Probs. 7–1 to 7–16. List the name of each property or con-

stant and its SI units. Then write out the primary dimensions

of each property or constant.

7–18E Thumb through the appendices of this book and/or

your thermodynamics book, and find three properties or con-

stants not mentioned in Probs. 7–1 to 7–17. List the name of

each property or constant and its English units. Then write

out the primary dimensions of each property or constant.

Dimensional Homogeneity

7–19C Explain the law of dimensional homogeneity in sim-

ple terms.

7–20 In Chap. 4 we defined the material acceleration,

which is the acceleration following a fluid particle (Fig.

P7–20),

(a) What are the primary dimensions of the gradient operator

�
→

? (b) Verify that each additive term in the equation has the

same dimensions. Answers: (a) {L�1}; (b) {L1t�2}

a
→

(x, y, z, t) �
�V

→

�t
� (V

→

� §
→

)V
→

H = r � mV

Point O

mV

Fluid

particle

r

→

→

→→→

FIGURE P7–13

7–14 Write the primary dimensions of each of the following

variables, showing all your work: (a) specific heat at constant

pressure cp; (b) specific weight rg; (c) specific enthalpy h.

7–15 Thermal conductivity k is a measure of the ability of

a material to conduct heat (Fig. P7–15). For conduction heat

transfer in the x-direction through a surface normal to the x-

direction, Fourier’s law of heat conduction is expressed as

where Q
.

conduction is the rate of heat transfer and A is the area

normal to the direction of heat transfer. Determine the pri-

mary dimensions of thermal conductivity (k). Look up a value

of k in the appendices and verify that its SI units are consistent

with your result. In particular, write the primary SI units of k.

Q
#

conduction � �kA 
dT

dx

Qconduction
⋅

T1 T2

A
k

x

FIGURE P7–15

7–16 Write the primary dimensions of each of the follow-

ing variables from the study of convection heat transfer (Fig.

q
•

g
•

h =
q

•

Ts – T
∞

T
∞

Ts

FIGURE P7–16

V � V(x, y, z, t)

F

(x, y, z)

Fluid particle at time t

Fluid particle at time t � dt

a � a(x, y, z, t)
m

→ →

→

→→

FIGURE P7–20

7–21 Newton’s second law is the foundation for the differ-

ential equation of conservation of linear momentum (to be

discussed in Chap. 9). In terms of the material acceleration

following a fluid particle (Fig. P7–20), we write Newton’s

second law as follows:

F
→

� ma
→

� mB�V
→

�t
� (V

→

� §
→

)V
→R
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Or, dividing both sides by the mass m of the fluid particle,

Write the primary dimensions of each additive term in the

equation, and verify that the equation is dimensionally homo-

geneous. Show all your work.

7–22 In Chap. 4 we defined volumetric strain rate as the

rate of increase of volume of a fluid element per unit volume

(Fig. P7–22). In Cartesian coordinates we write the volumet-

ric strain rate as

Write the primary dimensions of each additive term, and ver-

ify that the equation is dimensionally homogeneous. Show all

your work.

1

V
 
DV

Dt
�

�u

�x
�

�v

�y
�

�w

�z

F
→

m
�

�V
→

�t
� (V

→

� §
→

)V
→
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where m
.

is the mass flow rate of water through the pipe, and

cp is the specific heat of the water. Write the primary dimen-

sions of each additive term in the equation, and verify that the

equation is dimensionally homogeneous. Show all your work.

7–25 The Reynolds transport theorem (RTT) is discussed in

Chap. 4. For the general case of a moving and/or deforming

control volume, we write the RTT as follows:

where V
→

r is the relative velocity, i.e., the velocity of the fluid

relative to the control surface. Write the primary dimensions

of each additive term in the equation, and verify that the

equation is dimensionally homogeneous. Show all your work.

(Hint: Since B can be any property of the flow—scalar, vec-

tor, or even tensor—it can have a variety of dimensions. So,

just let the dimensions of B be those of B itself, {B}. Also, b

is defined as B per unit mass.)

7–26 An important application of fluid mechanics is the

study of room ventilation. In particular, suppose there is a

source S (mass per unit time) of air pollution in a room of

volume (Fig. P7–26). Examples include carbon monoxide

from cigarette smoke or an unvented kerosene heater, gases

like ammonia from household cleaning products, and vapors

given off by evaporation of volatile organic compounds

(VOCs) from an open container. We let c represent the mass

concentration (mass of contaminant per unit volume of air).

is the volume flow rate of fresh air entering the room. If

the room air is well mixed so that the mass concentration c is

uniform throughout the room, but varies with time, the differ-

ential equation for mass concentration in the room as a func-

tion of time is

where kw is an adsorption coefficient and As is the surface

area of walls, floors, furniture, etc., that adsorb some of the

contaminant. Write the primary dimensions of the first three

additive terms in the equation, and verify that those terms are

dimensionally homogeneous. Then determine the dimensions

of kw. Show all your work.

V 
dc

dt
� S � V

#
c � cAs kw

V
#

V

dBsys

dt
�

d

dt
 �

CV

 rb dV � �
CS

 rbV
→

r � n
→

 dA

Time = t1
Time = t2

Volume = V2

Volume = V1

FIGURE P7–22

7–23 In Chap. 9 we discuss the differential equation for

conservation of mass, the continuity equation. In cylindrical

coordinates, and for steady flow,

Write the primary dimensions of each additive term in the

equation, and verify that the equation is dimensionally homo-

geneous. Show all your work.

7–24 Cold water enters a pipe, where it is heated by an

external heat source (Fig. P7–24). The inlet and outlet water

temperatures are Tin and Tout, respectively. The total rate of

heat transfer Q
.

from the surroundings into the water in the

pipe is

Q
#

� m
#
cp(Tout � Tin)

1

r
 
�(rur)

�r
�

1

r
 
�uu

�u
�

�uz

�z
� 0

Q = mcp(Tout – Tin)
⋅ ⋅

m⋅

Tin Tout

FIGURE P7–24

Supply Exhaust

c(t)

As

kw S

V

V
⋅

FIGURE P7–26
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Nondimensionalization of Equations

7–27C What is the primary reason for nondimensionaliz-

ing an equation?

7–28 Consider ventilation of a well-mixed room as in Fig.

P7–26. The differential equation for mass concentration in

the room as a function of time is given in Prob. 7–26 and is

repeated here for convenience,

There are three characteristic parameters in such a situation:

L, a characteristic length scale of the room (assume L � 1/3);

the volume flow rate of fresh air into the room, and climit,

the maximum mass concentration that is not harmful. (a)

Using these three characteristic parameters, define dimen-

sionless forms of all the variables in the equation. (Hint: For

example, define c* � c/climit.) (b) Rewrite the equation in

dimensionless form, and identify any established dimension-

less groups that may appear.

7–29 Recall from Chap. 4 that the volumetric strain rate is

zero for a steady incompressible flow. In Cartesian coordi-

nates we express this as

Suppose the characteristic speed and characteristic length for

a given flow field are V and L, respectively (Fig. P7–29).

Define the following dimensionless variables,

Nondimensionalize the equation, and identify any established

(named) dimensionless parameters that may appear. Discuss.

u* �
u

V
, v* �

v

V
, and  w* �

w

V

x* �
x

L
, y* �

y

L
, z* �

z

L
,

�u

�x
�

�v

�y
�

�w

�z
� 0

V
#
,

V

V 
dc

dt
� S � V

#
c � cAs kw

Suppose the characteristic speed and characteristic length for

a given flow field are V and L, respectively. Also suppose that

f is a characteristic frequency of the oscillation (Fig. P7–30).

Define the following dimensionless variables,

Nondimensionalize the equation and identify any established

(named) dimensionless parameters that may appear.

z* �
z

L
, u* �

u

V
, v* �

v

V
, and  w* �

w

V

t* � ft,  V* �
V

L3
, x* �

x

L
, y* �

y

L
,

V

L

FIGURE P7–29

7–30 In an oscillating compressible flow field the volumet-

ric strain rate is not zero, but varies with time following a

fluid particle. In Cartesian coordinates we express this as

1

V
 
DV

Dt
�

�u

�x
�

�v

�y
�

�w

�z

ƒ� frequency of oscillation

L

V

V

Time t1 Time t2 Time t3

FIGURE P7–30

7–31 In Chap. 9 we define the stream function c for two-

dimensional incompressible flow in the xy-plane,

where u and v are the velocity components in the x- and y-

directions, respectively. (a) What are the primary dimensions

of c? (b) Suppose a certain two-dimensional flow has a char-

acteristic length scale L and a characteristic time scale t.

Define dimensionless forms of variables x, y, u, v, and c. (c)

Rewrite the equations in nondimensional form, and identify

any established dimensionless parameters that may appear.

7–32 In an oscillating incompressible flow field the force

per unit mass acting on a fluid particle is obtained from New-

ton’s second law in intensive form (see Prob. 7–21),

Suppose the characteristic speed and characteristic length for

a given flow field are V� and L, respectively. Also suppose

that v is a characteristic angular frequency (rad/s) of the

oscillation (Fig. P7–32). Define the following nondimension-

alized variables,

t* � vt, x
→

* �
x
→

L
,  §

→

* � L§
→

,  and  V
→

* �
V
→

V�

F
→

m
�

�V
→

�t
� (V

→

� §
→

)V
→

u �
�c

�y
  v � �

�c

�x
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Since there is no given characteristic scale for the force per

unit mass acting on a fluid particle, we assign one, noting

that {F
→

/m} � {L/t2}. Namely, we let

Nondimensionalize the equation of motion and identify any

established (named) dimensionless parameters that may

appear.

( F
→

/m)* �
1

v2L
F
→

/m

310
FLUID MECHANICS

Nondimensionalize the equation, and generate an expression

for the pressure coefficient Cp at any point in the flow where

the Bernoulli equation is valid. Cp is defined as

Answer: Cp � 1 � V/V2
�

Dimensional Analysis and Similarity

7–34C List the three primary purposes of dimensional

analysis.

7–35C List and describe the three necessary conditions for

complete similarity between a model and a prototype.

7–36 A student team is to design a human-powered subma-

rine for a design competition. The overall length of the proto-

type submarine is 2.24 m, and its student designers hope that

it can travel fully submerged through water at 0.560 m/s. The

water is freshwater (a lake) at T � 15°C. The design team

builds a one-eighth scale model to test in their university’s

wind tunnel (Fig. P7–36). A shield surrounds the drag bal-

ance strut so that the aerodynamic drag of the strut itself does

not influence the measured drag. The air in the wind tunnel is

at 25°C and at one standard atmosphere pressure. At what air

speed do they need to run the wind tunnel in order to achieve

similarity? Answer: 61.4 m/s

Cp �  
P � P�

1
2rV

2
�

V

F/m
a

m

Lc

V�

v

L

→

→

→

FIGURE P7–32

7–33 A wind tunnel is used to measure the pressure distri-

bution in the airflow over an airplane model (Fig. P7–33).

The air speed in the wind tunnel is low enough that com-

pressible effects are negligible. As discussed in Chap. 5, the

Bernoulli equation approximation is valid in such a flow situ-

ation everywhere except very close to the body surface or

wind tunnel wall surfaces and in the wake region behind the

model. Far away from the model, the air flows at speed V�

and pressure P�, and the air density r is approximately con-

stant. Gravitational effects are generally negligible in air-

flows, so we write the Bernoulli equation as

P �
1

2
 rV 2 � P� �

1

2 
 rV˛˛

2
�

P
�

, r

V�

Wind tunnel test section

Model

Traverse
Crank

Pressure
probe

Strut

FIGURE P7–33

P∞, r

FDV

Wind tunnel test section

Model

Shield

Drag balance

Strut

FIGURE P7–36

7–37 Repeat Prob. 7–36 with all the same conditions except

that the only facility available to the students is a much

smaller wind tunnel. Their model submarine is a one-twenty-

fourth scale model instead of a one-eighth scale model. At

what air speed do they need to run the wind tunnel in order to

achieve similarity? Do you notice anything disturbing or sus-

picious about your result? Discuss.

7–38E A lightweight parachute is being designed for mili-

tary use (Fig. P7–38E). Its diameter D is 24 ft and the total

weight W of the falling payload, parachute, and equipment is

230 lbf. The design terminal settling speed Vt of the para-

chute at this weight is 20 ft/s. A one-twelfth scale model of

the parachute is tested in a wind tunnel. The wind tunnel tem-

perature and pressure are the same as those of the prototype,
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namely 60°F and standard atmospheric pressure. (a) Calcu-

late the drag coefficient of the prototype. (Hint: At terminal

settling speed, weight is balanced by aerodynamic drag.) (b)

At what wind tunnel speed should the wind tunnel be run in

order to achieve dynamic similarity? (c) Estimate the aerody-

namic drag of the model parachute in the wind tunnel (in lbf).

7–41E The aerodynamic drag of a new sports car is to be

predicted at a speed of 60.0 mi/h at an air temperature of

25°C. Automotive engineers build a one-fourth scale model of

the car (Fig. P7–41E) to test in a wind tunnel. The temperature

of the wind tunnel air is also 25°C. The drag force is measured

with a drag balance, and the moving belt is used to simulate

the moving ground (from the car’s frame of reference). Deter-

mine how fast the engineers should run the wind tunnel to

achieve similarity between the model and the prototype.

7–42E This is a follow-up to Prob. 7–41E. The aerody-

namic drag on the model in the wind tunnel (Fig. P7–41E) is

measured to be 36.5 lbf when the wind tunnel is operated at

the speed that ensures similarity with the prototype car. Esti-

mate the drag force (in lbf) on the prototype car at the condi-

tions given in Prob. 7–41E.

7–43 Consider the common situation in which a researcher

is trying to match the Reynolds number of a large prototype

vehicle with that of a small-scale model in a wind tunnel. Is

it better for the air in the wind tunnel to be cold or hot?

Why? Support your argument by comparing wind tunnel air

at 10°C and at 50°C, all else being equal.

7–44 Some students want to visualize flow over a spin-

ning baseball. Their fluids laboratory has a nice water tun-

nel into which they can inject multicolored dye streaklines,

so they decide to test a spinning baseball in the water tunnel

(Fig. P7–44). Similarity requires that they match both the

Reynolds number and the Strouhal number between their

model test and the actual baseball that moves through the air

at 80 mi/h and spins at 300 rpm. Both the air and the water

are at 20°C. At what speed should they run the water in the

water tunnel, and at what rpm should they spin their base-

ball? Answers: 5.30 mi/h, 20.0 rpm

Payload

Vt

D

FIGURE P7–38E

7–39 Some wind tunnels are pressurized. Discuss why a

research facility would go through all the extra trouble and

expense to pressurize a wind tunnel. If the air pressure in the

tunnel increases by a factor of 1.5, all else being equal (same

wind speed, same model, etc.), by what factor will the

Reynolds number increase?

7–40 This is a follow-up to Prob. 7–36. The students mea-

sure the aerodynamic drag on their model submarine in the

wind tunnel (Fig. P7–36). They are careful to run the wind

tunnel at conditions that ensure similarity with the prototype

submarine. Their measured drag force is 2.3 N. Estimate the

drag force on the prototype submarine at the conditions given

in Prob. 7–36. Answer: 10.3 N

Moving belt Drag balance

FD, m

Vm

Lm

rm, mm

Wind tunnel test section

FIGURE P7–41E

V

r, m

Water tunnel test section

Spinning
baseball

Shield

MotorDye
injection

Strut

n

FIGURE P7–44

Dimensionless Parameters and the Method 
of Repeating Variables

7–45 Using primary dimensions, verify that the Archimedes

number (Table 7–5) is indeed dimensionless.

7–46 Using primary dimensions, verify that the Grashof

number (Table 7–5) is indeed dimensionless.
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7–47 Using primary dimensions, verify that the Rayleigh

number (Table 7–5) is indeed dimensionless. What other

established nondimensional parameter is formed by the ratio

of Ra and Gr? Answer: the Prandtl number

7–48 Consider a liquid in a cylindrical container in which

both the container and the liquid are rotating as a rigid body

(solid-body rotation). The elevation difference h between the

center of the liquid surface and the rim of the liquid surface

is a function of angular velocity v, fluid density r, gravitational

acceleration g, and radius R (Fig. P7–48). Use the method of

repeating variables to find a dimensionless relationship between

the parameters. Show all your work. Answer: h/R � f (Fr)

312
FLUID MECHANICS

7–51 Repeat Prob. 7–50, but with an additional independent

parameter included, namely, the speed of sound c in the fluid.

Use the method of repeating variables to generate a dimen-

sionless relationship for Kármán vortex shedding frequency fk

as a function of free-stream speed V, fluid density r, fluid

viscosity m, cylinder diameter D, and speed of sound c. Show

all your work.

7–52 A stirrer is used to mix chemicals in a large tank (Fig.

P7–52). The shaft power W
.

supplied to the stirrer blades is a

function of stirrer diameter D, liquid density r, liquid viscos-

ity m, and the angular velocity v of the spinning blades. Use

the method of repeating variables to generate a dimensionless

relationship between these parameters. Show all your work

and be sure to identify your � groups, modifying them as

necessary. Answer: Np � f (Re)

Liquid

Free 
surface

g

R

v

r

h

→

FIGURE P7–48

7–49 Consider the case in which the container and liquid of

Prob. 7–48 are initially at rest. At t � 0 the container begins

to rotate. It takes some time for the liquid to rotate as a rigid

body, and we expect that the liquid’s viscosity is an addi-

tional relevant parameter in the unsteady problem. Repeat

Prob. 7–48, but with two additional independent parameters

included, namely, fluid viscosity m and time t. (We are inter-

ested in the development of height h as a function of time

and the other parameters.)

7–50 A periodic Kármán vortex street is formed when a

uniform stream flows over a circular cylinder (Fig. P7–50).

Use the method of repeating variables to generate a dimen-

sionless relationship for Kármán vortex shedding frequency fk

as a function of free-stream speed V, fluid density r, fluid

viscosity m, and cylinder diameter D. Show all your work.

Answer: St � f (Re)

r, m

V
D

fk

FIGURE P7–50

W

r, m

v

⋅

D

FIGURE P7–52

7–53 Repeat Prob. 7–52 except do not assume that the tank

is large. Instead, let tank diameter Dtank and average liquid

depth htank be additional relevant parameters.

7–54 A boundary layer is a thin region (usually along a

wall) in which viscous forces are significant and within

which the flow is rotational. Consider a boundary layer grow-

ing along a thin flat plate (Fig. P7–54). The flow is steady.

The boundary layer thickness d at any downstream distance x

is a function of x, free-stream velocity V�, and fluid proper-

ties r (density) and m (viscosity). Use the method of repeat-

ing variables to generate a dimensionless relationship for d as

a function of the other parameters. Show all your work.

x

y

V�

d(x)r, m

FIGURE P7–54

7–55 Miguel is working on a problem that has a character-

istic length scale L, a characteristic velocity V, a characteris-

tic density difference �r, a characteristic (average) density r,

and of course the gravitational constant g, which is always

available. He wants to define a Richardson number, but does
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not have a characteristic volume flow rate. Help Miguel

define a characteristic volume flow rate based on the parame-

ters available to him, and then define an appropriate Richard-

son number in terms of the given parameters.

7–56 Consider fully developed Couette flow—flow between

two infinite parallel plates separated by distance h, with the

top plate moving and the bottom plate stationary as illus-

trated in Fig. P7–56. The flow is steady, incompressible, and

two-dimensional in the xy-plane. Use the method of repeating

variables to generate a dimensionless relationship for the x-

component of fluid velocity u as a function of fluid viscosity

m, top plate speed V, distance h, fluid density r, and distance

y. Show all your work. Answer: u/V � f (Re, y/h)

7–60 Repeat Prob. 7–58, except let the speed of sound c in

an ideal gas be a function only of absolute temperature T and

specific ideal gas constant Rgas. Showing all your work, use

dimensional analysis to find the functional relationship

between these parameters. Answer:

7–61 Repeat Prob. 7–58, except let speed of sound c in an

ideal gas be a function only of pressure P and gas density r.

Showing all your work, use dimensional analysis to find the

functional relationship between these parameters. Verify that

your results are consistent with the equation for speed of

sound in an ideal gas, .

7–62 When small aerosol particles or microorganisms move

through air or water, the Reynolds number is very small

(Re 		 1). Such flows are called creeping flows. The aero-

dynamic drag on an object in creeping flow is a function only

of its speed V, some characteristic length scale L of the

object, and fluid viscosity m (Fig. P7–62). Use dimensional

analysis to generate a relationship for FD as a function of the

independent variables.

c � 1kRgasT

c/1RgasT  � constant

r, m

h y

u

V

x

FIGURE P7–56

7–57 Consider developing Couette flow—the same flow as

Prob. 7–56 except that the flow is not yet steady-state, but is

developing with time. In other words, time t is an additional

parameter in the problem. Generate a dimensionless relation-

ship between all the variables.

7–58 The speed of sound c in an ideal gas is known to be a

function of the ratio of specific heats k, absolute temperature

T, and specific ideal gas constant Rgas (Fig. P7–58). Showing

all your work, use dimensional analysis to find the functional

relationship between these parameters.

c

k, T, Rgas

FIGURE P7–58

7–59 Repeat Prob. 7–58, except let the speed of sound c in

an ideal gas be a function of absolute temperature T, univer-

sal ideal gas constant Ru, molar mass (molecular weight) M

of the gas, and ratio of specific heats k. Showing all your

work, use dimensional analysis to find the functional rela-

tionship between these parameters.

V

L

FD

m

FIGURE P7–62

7–63 A tiny aerosol particle of density rp and characteristic

diameter Dp falls in air of density r and viscosity m (Fig.

P7–63). If the particle is small enough, the creeping flow

approximation is valid, and the terminal settling speed of the

particle V depends only on Dp, m, gravitational constant g,

and the density difference (rp � r). Use dimensional analysis

to generate a relationship for V as a function of the indepen-

dent variables. Name any established dimensionless parame-

ters that appear in your analysis.

V

g

r, m
Dp

rp

FIGURE P7–63

7–64 Combine the results of Probs. 7–62 and 7–63 to gen-

erate an equation for the settling speed V of an aerosol parti-

cle falling in air (Fig. P7–63). Verify that your result is con-

sistent with the functional relationship obtained in Prob.

7–63. For consistency, use the notation of Prob. 7–63. (Hint:

For a particle falling at constant settling speed, the particle’s

net weight must equal its aerodynamic drag. Your final result

should be an equation for V that is valid to within some

unknown constant.)
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7–65 You will need the results of Prob. 7–64 to do this

problem. A tiny aerosol particle falls at steady settling speed

V. The Reynolds number is small enough that the creeping

flow approximation is valid. If the particle size is doubled, all

else being equal, by what factor will the settling speed go up?

If the density difference (rp � r) is doubled, all else being

equal, by what factor will the settling speed go up?

7–66 An incompressible fluid of density r and viscosity m

flows at average speed V through a long, horizontal section of

round pipe of length L, inner diameter D, and inner wall

roughness height � (Fig. P7–66). The pipe is long enough

that the flow is fully developed, meaning that the velocity

profile does not change down the pipe. Pressure decreases

(linearly) down the pipe in order to “push” the fluid through

the pipe to overcome friction. Using the method of repeating

variables, develop a nondimensional relationship between pres-

sure drop �P � P1 � P2 and the other parameters in the prob-

lem. Be sure to modify your � groups as necessary to achieve

established nondimensional parameters, and name them.

(Hint: For consistency, choose D rather than L or � as one of

your repeating parameters.) Answer: Eu � f (Re, �/D, L/D)
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Experimental Testing and Incomplete Similarity

7–69C Define wind tunnel blockage. What is the rule of

thumb about the maximum acceptable blockage for a wind

tunnel test? Explain why there would be measurement errors

if the blockage were significantly higher than this value.

7–70C What is the rule of thumb about the Mach number

limit in order that the incompressible flow approximation is

reasonable? Explain why wind tunnel results would be incor-

rect if this rule of thumb were violated.

7–71C Although we usually think of a model as being

smaller than the prototype, describe at least three situations in

which it is better for the model to be larger than the prototype.

7–72C Discuss the purpose of a moving ground belt in

wind tunnel tests of flow over model automobiles. Can you

think of an alternative if a moving ground belt is unavailable?

7–73 Use dimensional analysis to show that in a problem

involving shallow water waves (Fig. P7–73), both the Froude

number and the Reynolds number are relevant dimensionless

parameters. The wave speed c of waves on the surface of a

liquid is a function of depth h, gravitational acceleration g,

fluid density r, and fluid viscosity m. Manipulate your �’s to

get the parameters into the following form:

Fr �
c

2gh
� f (Re)  where  Re �

rch

m

D

P1 P2

V
r, m

e

L

FIGURE P7–66

7–67 Consider laminar flow through a long section of pipe,

as in Fig. P7–66. For laminar flow it turns out that wall

roughness is not a relevant parameter unless � is very large.

The volume flow rate through the pipe is in fact a function

of pipe diameter D, fluid viscosity m, and axial pressure gra-

dient dP/dx. If pipe diameter is doubled, all else being equal,

by what factor will volume flow rate increase? Use dimen-

sional analysis.

7–68 The rate of heat transfer to water flowing in a pipe

was analyzed in Prob. 7–24. Let us approach that same prob-

lem, but now with dimensional analysis. Cold water enters a

pipe, where it is heated by an external heat source (Fig.

P7–68). The inlet and outlet water temperatures are Tin and

Tout, respectively. The total rate of heat transfer Q
.

from the

surroundings into the water in the pipe is known to be a func-

tion of mass flow rate m
.
, the specific heat cp of the water,

and the temperature difference between the incoming and

outgoing water. Showing all your work, use dimensional

analysis to find the functional relationship between these

parameters, and compare to the analytical equation given in

Prob. 7–24. (Note: We are pretending that we do not know

the analytical equation.)

V
#

Q
⋅

m⋅

Tin

cp = specific heat of the water

Tout

FIGURE P7–68

r, m
h

c

g
→

FIGURE P7–73

7–74 Water at 20°C flows through a long, straight pipe. The

pressure drop is measured along a section of the pipe of

length L � 1.3 m as a function of average velocity V through

the pipe (Table P7–74). The inner diameter of the pipe is D

� 10.4 cm. (a) Nondimensionalize the data and plot the

Euler number as a function of the Reynolds number. Has the

experiment been run at high enough speeds to achieve

Reynolds number independence? (b) Extrapolate the experi-

mental data to predict the pressure drop at an average speed

of 80 m/s. Answer: 1,940,000 N/m2
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7–75 In the model truck example discussed in Section 7–5,

the wind tunnel test section is 2.6 m long, 1.0 m tall, and 1.2

m wide. The one-sixteenth scale model truck is 0.991 m long,

0.257 m tall, and 0.159 m wide. What is the wind tunnel

blockage of this model truck? Is it within acceptable limits

according to the standard rule of thumb?

7–76C Consider again the model truck example discussed

in Section 7–5, except that the maximum speed of the wind

tunnel is only 50 m/s. Aerodynamic force data are taken for

wind tunnel speeds between V � 20 and 50 m/s—assume the

same data for these speeds as those listed in Table 7–7. Based

on these data alone, can the researchers be confident that they

have reached Reynolds number independence?

7–77E A small wind tunnel in a university’s undergraduate

fluid flow laboratory has a test section that is 20 by 20 in in

cross section and is 4.0 ft long. Its maximum speed is 160

ft/s. Some students wish to build a model 18-wheeler to study

how aerodynamic drag is affected by rounding off the back of

the trailer. A full-size (prototype) tractor-trailer rig is 52 ft

long, 8.33 ft wide, and 12 ft high. Both the air in the wind

tunnel and the air flowing over the prototype are at 80°F and

atmospheric pressure. (a) What is the largest scale model

they can build to stay within the rule-of-thumb guidelines for

blockage? What are the dimensions of the model truck in

inches? (b) What is the maximum model truck Reynolds

number achievable by the students? (c) Are the students able

to achieve Reynolds number independence? Discuss.

7–78 A one-sixteenth scale model of a new sports car is

tested in a wind tunnel. The prototype car is 4.37 m long,

1.30 m tall, and 1.69 m wide. During the tests, the moving

ground belt speed is adjusted so as to always match the speed

of the air moving through the test section. Aerodynamic drag

force FD is measured as a function of wind tunnel speed; the

experimental results are listed in Table P7–78. Plot drag coef-

ficient CD as a function of the Reynolds number Re, where

the area used for calculation of CD is the frontal area of the

model car (assume A � width � height), and the length scale

used for calculation of Re is car width W. Have we achieved

dynamic similarity? Have we achieved Reynolds number

independence in our wind tunnel test? Estimate the aerody-

namic drag force on the prototype car traveling on the high-

way at 29 m/s (65 mi/h). Assume that both the wind tunnel

air and the air flowing over the prototype car are at 25°C and

atmospheric pressure. Answers: no, yes, 350 N

TABLE P7–74

V, m/s �P, N/m2

0.5 77.0

1 306

2 1218

4 4865

6 10,920

8 19,440

10 30,340

15 68,330

20 121,400

25 189,800

30 273,200

35 372,100

40 485,300

45 614,900

50 758,700

TABLE P7–78

V, m/s FD, N

10 0.29

15 0.64

20 0.96

25 1.41

30 1.55

35 2.10

40 2.65

45 3.28

50 4.07

55 4.91

Review Problems

7–79C For each statement, choose whether the statement is

true or false and discuss your answer briefly. 

(a) Kinematic similarity is a necessary and sufficient condi-

tion for dynamic similarity.

(b) Geometric similarity is a necessary condition for dynamic

similarity. 

(c) Geometric similarity is a necessary condition for kine-

matic similarity. 

(d) Dynamic similarity is a necessary condition for kinematic

similarity.

7–80C Think about and describe a prototype flow and a

corresponding model flow that have geometric similarity, but

not kinematic similarity, even though the Reynolds numbers

match. Explain.

7–81C There are many established nondimensional para-

meters besides those listed in Table 7–5. Do a literature

search or an Internet search and find at least three estab-

lished, named nondimensional parameters that are not listed

in Table 7–5. For each one, provide its definition and its ratio

of significance, following the format of Table 7–5. If your

equation contains any variables not identified in Table 7–5,

be sure to identify those variables.

7–82 Write the primary dimensions of each of the follow-

ing variables from the field of solid mechanics, showing all

your work: (a) moment of inertia I; (b) modulus of elasticity

E, also called Young’s modulus; (c) strain �; (d ) stress s.
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(e) Finally, show that the relationship between stress and strain

(Hooke’s law) is a dimensionally homogeneous equation.

7–83 Force F is applied at the tip of a cantilever beam of

length L and moment of inertia I (Fig. P7–83). The modulus

of elasticity of the beam material is E. When the force is

applied, the tip deflection of the beam is zd. Use dimensional

analysis to generate a relationship for zd as a function of the

independent variables. Name any established dimensionless

parameters that appear in your analysis.

7–84 An explosion occurs in the atmosphere when an anti-

aircraft missile meets its target (Fig. P7–84). A shock wave

(also called a blast wave) spreads out radially from the

explosion. The pressure difference across the blast wave �P

and its radial distance r from the center are functions of time

t, speed of sound c, and the total amount of energy E released

by the explosion. (a) Generate dimensionless relationships

between �P and the other parameters and between r and the

other parameters. (b) For a given explosion, if the time t since

the explosion doubles, all else being equal, by what factor

will �P decrease?

316
FLUID MECHANICS

7–86 Consider steady, laminar, fully developed, two-

dimensional Poiseuille flow—flow between two infinite paral-

lel plates separated by distance h, with both the top plate and

bottom plate stationary, and a forced pressure gradient dP/dx

driving the flow as illustrated in Fig. P7–86. (dP/dx is con-

stant and negative.) The flow is steady, incompressible, and

two-dimensional in the xy-plane. The flow is also fully devel-

oped, meaning that the velocity profile does not change with

downstream distance x. Because of the fully developed nature

of the flow, there are no inertial effects and density does not

enter the problem. It turns out that u, the velocity component

in the x-direction, is a function of distance h, pressure gradient

dP/dx, fluid viscosity m, and vertical coordinate y. Perform a

dimensional analysis (showing all your work), and generate a

dimensionless relationship between the given variables.

F

L

E, I zd

FIGURE P7–83

Blast
wave

Pow!

E
c

r

�P

FIGURE P7–84

7–85 The Archimedes number listed in Table 7–5 is appro-

priate for buoyant particles in a fluid. Do a literature search or

an Internet search and find an alternative definition of the

Archimedes number that is appropriate for buoyant fluids

(e.g., buoyant jets and buoyant plumes, heating and air-condi-

tioning applications). Provide its definition and its ratio of sig-

nificance, following the format of Table 7–5. If your equation

contains any variables not identified in Table 7–5, be sure to

identify those variables. Finally, look through the established

dimensionless parameters listed in Table 7–5 and find one that

is similar to this alternate form of the Archimedes number.

x

u(y)

umax

m

h
y

FIGURE P7–86

7–87 Consider the steady, laminar, fully developed, two-

dimensional Poiseuille flow of Prob. 7–86. The maximum

velocity umax occurs at the center of the channel. (a) Generate

a dimensionless relationship for umax as a function of distance

between plates h, pressure gradient dP/dx, and fluid viscosity

m. (b) If the plate separation distance h is doubled, all else

being equal, by what factor will umax change? (c) If the pres-

sure gradient dP/dx is doubled, all else being equal, by what

factor will umax change? (d) How many experiments are

required to describe the complete relationship between umax

and the other parameters in the problem?

7–88 The pressure drop �P � P1 � P2 through a

long section of round pipe can be written in

terms of the shear stress tw along the wall. Shown in Fig.

P7–88 is the shear stress acting by the wall on the fluid. The

shaded blue region is a control volume composed of the fluid

in the pipe between axial locations 1 and 2. There are two

dimensionless parameters related to the pressure drop: the

Euler number Eu and the Darcy friction factor f. (a) Using the

control volume sketched in Fig. P7–88, generate a relationship

for f in terms of Eu (and any other properties or parameters

in the problem as needed). (b) Using the experimental data

1 2

P1
CV P2

tw

L

D
V

r, m

FIGURE P7–88
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and conditions of Prob. 7–74 (Table P7–74), plot the Darcy

friction factor as a function of Re. Does f show Reynolds

number independence at large values of Re? If so, what is the

value of f at very high Re? Answers: (a) f � (b) yes,

0.0487

7–89 Oftentimes it is desirable to work with an established

dimensionless parameter, but the characteristic scales avail-

able do not match those used to define the parameter. In such

cases, we create the needed characteristic scales based on 

dimensional reasoning (usually by inspection). Suppose for

example that we have a characteristic velocity scale V, char-

acteristic area A, fluid density r, and fluid viscosity m, and

we wish to define a Reynolds number. We create a length

scale , and define

In similar fashion, define the desired established dimension-

less parameter for each case: (a) Define a Froude number,

given � � volume flow rate per unit depth, length scale L,

and gravitational constant g. (b) Define a Reynolds number,

given � � volume flow rate per unit depth and kinematic

viscosity n. (c) Define a Richardson number, given � � vol-

ume flow rate per unit depth, length scale L, characteristic

density difference �r, characteristic density r, and gravita-

tional constant g.

7–90 A liquid of density r and viscosity m flows by gravity

through a hole of diameter d in the bottom of a tank of diam-

eter D (Fig. P7–90). At the start of the experiment, the liquid

surface is at height h above the bottom of the tank, as

sketched. The liquid exits the tank as a jet with average

velocity V straight down as also sketched. Using dimensional

analysis, generate a dimensionless relationship for V as a

function of the other parameters in the problem. Identify any

established nondimensional parameters that appear in your

result. (Hint: There are three length scales in this problem.

For consistency, choose h as your length scale.)

V
#

V
#

V
#

Re �
rV2A

m

L �  1A

2 
D

L
Eu;

tank diameter D, density r, viscosity m, initial liquid surface

height h, and gravitational acceleration g.

7–92 A liquid delivery system is being designed such that

ethylene glycol flows out of a hole in the bottom of a large

tank, as in Fig. P7–90. The designers need to predict how

long it will take for the ethylene glycol to completely drain.

Since it would be very expensive to run tests with a full-scale

prototype using ethylene glycol, they decide to build a one-

quarter scale model for experimental testing, and they plan to

use water as their test liquid. The model is geometrically

similar to the prototype (Fig. P7–92). (a) The temperature of

the ethylene glycol in the prototype tank is 60°C, at which n

� 4.75 � 10�6 m2/s. At what temperature should the water in

the model experiment be set in order to ensure complete sim-

ilarity between model and prototype? (b) The experiment is

run with water at the proper temperature as calculated in part

(a). It takes 4.53 min to drain the model tank. Predict how

long it will take to drain the ethylene glycol from the proto-

type tank. Answers: (a) 45.8°C, (b) 9.06 min

h

D

d

r, m

g

V

→

FIGURE P7–90

7–91 Repeat Prob. 7–90 except for a different dependent

parameter, namely, the time required to empty the tank tempty.

Generate a dimensionless relationship for tempty as a function

of the following independent parameters: hole diameter d,

hp

Dp

Prototype

rp, mp

dp

Dm
hm

Model

rm, mm

dm

g
→

FIGURE P7–92

7–93 Liquid flows out of a hole in the bottom of a tank as

in Fig. P7–90. Consider the case in which the hole is very

small compared to the tank (d 		 D). Experiments reveal

that average jet velocity V is nearly independent of d, D, r, or

m. In fact, for a wide range of these parameters, it turns out

that V depends only on liquid surface height h and gravita-

tional acceleration g. If the liquid surface height is doubled,

all else being equal, by what factor will the average jet veloc-

ity increase? Answer: 

7–94 An aerosol particle of characteristic size Dp moves in

an airflow of characteristic length L and characteristic veloc-

ity V. The characteristic time required for the particle to

adjust to a sudden change in air speed is called the particle

relaxation time tp,

tp �
rpD

2
p

18m

12
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Verify that the primary dimensions of tp are time. Then cre-

ate a dimensionless form of tp, based on some characteristic

velocity V and some characteristic length L of the airflow

(Fig. P7–94). What established dimensionless parameter do

you create?
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manipulation of the two given parameters: (a) Reynolds num-

ber and Prandtl number; (b) Schmidt number and Prandtl

number; (c) Reynolds number and Schmidt number.

7–98 The Stanton number is listed as a named, established

nondimensional parameter in Table 7–5. However, careful

analysis reveals that it can actually be formed by a combina-

tion of the Reynolds number, Nusselt number, and Prandtl

number. Find the relationship between these four dimension-

less groups, showing all your work. Can you also form the

Stanton number by some combination of only two other

established dimensionless parameters?

7–99 Consider a variation of the fully developed Couette

flow problem of Prob. 7–56—flow between two infinite paral-

lel plates separated by distance h, with the top plate moving at

speed Vtop and the bottom plate moving at speed Vbottom as

illustrated in Fig. P7–99. The flow is steady, incompressible,

and two-dimensional in the xy-plane. Generate a dimension-

less relationship for the x-component of fluid velocity u as a

function of fluid viscosity m, plate speeds Vtop and Vbottom, dis-

tance h, fluid density r, and distance y. (Hint: Think carefully

about the list of parameters before rushing into the algebra.)

r, m

V

L

Dp

rp

FIGURE P7–94

7–95 Compare the primary dimensions of each of the fol-

lowing properties in the mass-based primary dimension sys-

tem (m, L, t, T, I, C, N) to those in the force-based primary

dimension system (F, L, t, T, I, C, N): (a) pressure or stress;

(b) moment or torque; (c) work or energy. Based on your

results, explain when and why some authors prefer to use

force as a primary dimension in place of mass.

7–96 In Example 7–7, the mass-based system of primary

dimensions was used to establish a relationship for the pres-

sure difference �P � Pinside � Poutside between the inside and

outside of a soap bubble as a function of soap bubble radius

R and surface tension ss of the soap film (Fig. P7–96).

Repeat the dimensional analysis using the method of repeat-

ing variables, but use the force-based system of primary

dimensions instead. Show all your work. Do you get the

same result?

Soap 
film

Pinside

Poutside

ss

ss

R

FIGURE P7–96

7–97 Many of the established nondimensional parameters

listed in Table 7–5 can be formed by the product or ratio of

two other established nondimensional parameters. For each

pair of nondimensional parameters listed, find a third estab-

lished nondimensional parameter that is formed by some

r, m

h
y

u

x

Vbottom

Vtop

FIGURE P7–99

7–100 What are the primary dimensions of electric charge

q, the units of which are coulombs (C)? (Hint: Look up the

fundamental definition of electric current.)

7–101 What are the primary dimensions of electrical capac-

itance C, the units of which are farads? (Hint: Look up the

fundamental definition of electrical capacitance.)

7–102 In many electronic circuits in which some kind of

time scale is involved, such as filters and time-delay circuits

(Fig. P7–102—a low-pass filter), you often see a resistor (R)

and a capacitor (C) in series. In fact, the product of R and C

is called the electrical time constant, RC. Showing all your

work, what are the primary dimensions of RC? Using dimen-

CR
EoutEin

FIGURE P7–102
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sional reasoning alone, explain why a resistor and capacitor

are often found together in timing circuits.

7–103 From fundamental electronics, the current flowing

through a capacitor at any instant of time is equal to the capac-

itance times the rate of change of voltage across the capacitor,

Write the primary dimensions of both sides of this equation,

and verify that the equation is dimensionally homogeneous.

Show all your work.

7–104 A common device used in various applications to

clean particle-laden air is the reverse-flow cyclone (Fig.

P7–104). Dusty air (volume flow rate and density r) enters

tangentially through an opening in the side of the cyclone

and swirls around in the tank. Dust particles are flung out-

ward and fall out the bottom, while clean air is drawn out the

top. The reverse-flow cyclones being studied are all geomet-

rically similar; hence, diameter D represents the only length

scale required to fully specify the entire cyclone geometry.

Engineers are concerned about the pressure drop dP through

the cyclone. (a) Generate a dimensionless relationship between

the pressure drop through the cyclone and the given parame-

ters. Show all your work. (b) If the cyclone size is doubled,

all else being equal, by what factor will the pressure drop

change? (c) If the volume flow rate is doubled, all else being

equal, by what factor will the pressure drop change?

Answers: (a) D4dP/rV2 � constant; (b) 1/16; (c) 4

V
#

I � C 
dE

dt

plate and moves toward that plate at a speed called the drift

velocity w. If the plates are long enough, the dust particle

impacts the negatively charged plate and adheres to it. Clean

air exits the device. It turns out that for very small particles

the drift velocity depends only on qp, Ef , Dp, and air viscosity

m. (a) Generate a dimensionless relationship between the

drift velocity through the collector stage of the ESP and the

given parameters. Show all your work. (b) If the electric field

strength is doubled, all else being equal, by what factor will

the drift velocity change? (c) For a given ESP, if the particle

diameter is doubled, all else being equal, by what factor will

the drift velocity change?

D

Dusty air in

Dust and bleed air out

Clean air out

V, r
⋅

FIGURE P7–104

7–105 An electrostatic precipitator (ESP) is a device used

in various applications to clean particle-laden air. First, the

dusty air passes through the charging stage of the ESP, where

dust particles are given a positive charge qp (coulombs) by

charged ionizer wires (Fig. P7–105). The dusty air then

enters the collector stage of the device, where it flows

between two oppositely charged plates. The applied electric

field strength between the plates is Ef (voltage difference per

unit distance). Shown in Fig. P7–105 is a charged dust parti-

cle of diameter Dp. It is attracted to the negatively charged

Dusty air in

Dust particle,
diameter Dp

Ionizer wire

Charging stage

+

+

+

+

+ +

+

+

–

––

–

Collector stage

Clean air out

Ef

w

V

qp

m

FIGURE P7–105

7–106 When a capillary tube of small diameter D is

inserted into a container of liquid, the liquid rises to height h

inside the tube (Fig. P7–106). h is a function of liquid density

r, tube diameter D, gravitational constant g, contact angle f,

and the surface tension ss of the liquid. (a) Generate a

dimensionless relationship for h as a function of the given

parameters. (b) Compare your result to the exact analytical

equation for h given in Chap. 2. Are your dimensional analy-

sis results consistent with the exact equation? Discuss.

h
D

g

f

r, ss

→

FIGURE P7–106
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7–107 Repeat part (a) of Prob. 7–106, except instead of

height h, find a functional relationship for the time scale trise

needed for the liquid to climb up to its final height in the cap-

illary tube. (Hint: Check the list of independent parameters in

Prob. 7–106. Are there any additional relevant parameters?)

7–108 Sound intensity I is defined as the acoustic power

per unit area emanating from a sound source. We know that I

is a function of sound pressure level P (dimensions of pres-

sure) and fluid properties r (density) and speed of sound c.
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(a) Use the method of repeating variables in mass-based pri-

mary dimensions to generate a dimensionless relationship for

I as a function of the other parameters. Show all your work.

What happens if you choose three repeating variables? Dis-

cuss. (b) Repeat part (a), but use the force-based primary

dimension system. Discuss.

7–109 Repeat Prob. 7–108, but with the distance r from the

sound source as an additional independent parameter.
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