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Abstract 
 
 A proxy blind signature scheme is a special form of blind 
signature which allows a designated person called proxy 
signer to sign on behalf of two or more original signers 
without knowing the content of the message or document. 
It combines the advantages of proxy signature, blind 
signature and multi-signature scheme and satisfies the 
security properties of both proxy and blind signature 
scheme. Most of the exiting proxy blind signature schemes 
were developed based on the mathematical hard problems 
integer factorization (IFP) and simple discrete logarithm 
(DLP) which take sub-exponential time to solve. This 
paper describes an secure simple proxy blind signature 
scheme based on Elliptic Curve Discrete Logarithm 
Problem (ECDLP) takes fully-exponential time. This can 
be implemented in low power and small processor mobile 
devices such as smart card, PDA etc. Here also we 
describes implementation issues of various scalar 
multiplication for ECDLP  
 
Keywords: ECDLP, IFP, blind signature, proxy signature. 

1. Introduction 

Blind signature scheme was first introduced by Chaum 
[2]. It is a protocol for obtaining a signature from a signer, 
but the signer can neither learn the messages nor the 
signatures. The recipients obtain afterwards. In 1996, 
mamo et al proposed the concept of proxy signature [1]. In 
proxy signature scheme, the original signer delegates his 
signing capacity to a proxy signer who can sign a message 
submitted on behalf of the original signer. A verifier can 
validate its correctness and can distinguish between a 
normal signature and a proxy signature. A proxy blind 
signature scheme is a digital signature scheme that ensures 
the properties of proxy signature and blind signature. In a 
proxy blind signature, an original signer delegates his 
signing capacity to proxy signer.  

2. Preliminaries 

2.1 Notations 
 
Common notations used in this paper as follows: 
 

  p  : The order of underlying finite field. 

  pF  : the underlying  finite  field of order p  

  E: elliptic curve defined on finite field pF  with 

large order. 
  G: the group of elliptic curve points on E. 

  P: a point in )( pFE with order n, where n is a 

large prime number. 
  H (.): a secure one-way hash function. 
  d: the secret key of the original signer S to be 

chosen randomly from [1, n - 1]. 
  Q is the public key of the original signer S, 

where Q = d. Q. 
  k: Concatenation operation between two bit 

stings.  

3. Backgrounds 

In this section we brief overview of prime field, Elliptic 
Curve over that field and Elliptic Curve Discrete 
Logarithm Problem. 

3.1 The finite field pF  

Let p be a prime number. The finite field pF is comprised 

of the set of integers 0, 1, 2…. p-1 with the following 
arithmetic operations [4] [5] [6]: 
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 Addition: If a, b  pF , then a + b = r, where r is 

the remainder when a + b is divided by p and 0 
  r   p- 1. This is known as addition modulo p.  

 Multiplication: If a, b pF , then a.b = s, where s 

is the remainder when a.b is divided by p and 0 
  s   p-1. This is known as multiplication 
modulo p. 

 Inversion: If a is a non-zero element in pF , the 

inverse of a modulo p, denoted a¡1, is the unique 

integer c   pF  for which a.c = 1. 

3.2 Elliptic Curve over pF  

Let p ¸ 3 be a prime number. Let a, b  pF  be such that 

0274 23  ba in pF . An elliptic curve E over pF  

defined by the parameters a and b is the set of all solutions 

(x, y) ,  x, y   pF , to the equation baxxy  32  , 

together with an extra point O, the point at infinity. The 

set of points )( pFE forms an abelian group with the 

following addition rules [8]: 
 

1. Identity : P + O = O + P = P, for all P   )( pFE   

2. Negative: if P(x; y)   )( pFE  then (x, y) + (x,-y) 

= O, The point (x,-y) is dented as -P called 
negative of P. 

3. Point addition: Let P( ), 11 yx , Q ),( 22 yx    

)( pFE , then P + Q = R   )( pFE  and 

coordinate ),( 33 yx  of R is given by 

21
2

3 xxx   and 1313 )( yxxy   . 

        Where )(
)(

12

12
xx

yy


    

4. Point doubling: Let P( ), 11 yx   E(K) where P 

 -P then 2P = (x3; y3) 

where 1
2

1

2
1

3 2)2
3( xy

axx   and 

131
1

2
1

3 )(2
)3( yxxy

axy  . 

3.3 Elliptic Curve Discrete Logarithm 
Problem (ECDLP) 

Given an elliptic curve E defined over a finite field pF  ,a 

point P   )( pFE of order n, and a point Q   < P >, 

find the integer l  [0, n-1] such that Q = lP. The integer l 
is called discrete logarithm of Q to base P, denoted l = 

Qplog  [8].  

4. Proxy Signatures and Proxy Blind 
Signature 

A proxy blind signature is a digital signature scheme that 
ensures the properties of proxy signature and blind 
signature schemes. Proxy blind signature scheme is an 
extension of proxy blind signature, which allows a single 
designated proxy signer to generate a blind signature on 
behalf of group of original signers. A proxy blind 
signature scheme consists of the following three 
phases[9]: 
 

 Proxy key generation 
 Proxy blind multi-signature scheme 
 Signature verification 

 

5.  Security properties 

The security properties for a secure blind multi-signature 
scheme are as follows [9] 
 

 Distinguishability: The proxy blind multi-
signature must be distinguishable from the 
ordinary signature. 

 Strong unforgeability: Only the designated 
proxy signer can create the proxy blind signature 
for the original signer. 

 Non-repudiation: The proxy signer can not 
claim that the proxy signer is disputed or illegally 
signed by the original signer. 

 Verifiability: The proxy blind multi-signature 
can be verified by everyone. After verification, 
the verifier can be convinced of the original 
signer's agreement on the signed message.  

 Strong undeniably: Due to fact that the 
delegation information is signed by the original 
signer and the proxy signature are generated by 
the proxy signer's secret key. Both the signer can 
not deny their behavior. 

 Unlinkability: When the signer is revealed, the 
proxy signer can not identify the association 
between the message and the blind signature he 
generated. 

 Secret key dependencies: Proxy key or 
delegation pair can be computed only by the 
original signer's secret key. 

 Prevention of misuse: The proxy signer cannot 
use the proxy secret key for purposes other than 
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generating valid proxy signatures. In case of 
misuse, the responsibility of the proxy signer 
should be determined explicitly. 

6. Proposed Protocol 

The protocol involves three entities: Original signer S, 

Proxy signer sP  and verifier V.  It is described as follows. 

6.1 Proxy Phase 

 Proxy generation: The original signer S selects 
random integer k in the interval [1, n-1]. 

Computes R = k. P = ),( 11 yx  and r =  1x  mod n. 

Where 1x  is regarded as an integer between 0 

and q - 1. Then computes s = (d + k. r) mod n and 

computes PsQp . . 

 
 Proxy delivery: The original signer S sends (s, r) 

to the proxy signer  sP  and make pQ public. 

 
 Proxy Verification: After receiving the secret 

key pairs (s, r), the proxy signer sP  checks the 

validity of the secret key pairs (s, r) with the 
following equation. 

 

RrQPsQp ..                  (1) 

6.2 Signing Phase 

 The Proxy signer sP  chooses random integer t   

[1, n- 1] and computes U = t .P and sends it to the 
verifier V. 

 After receiving the verifier chooses 

randomly ,     [1 n-1] and computes the 

following 
 

                 pQPUR ..
~                     (2) 

                                  )
~

(~ MRHe                  (3) 

                                 nee mod)~(           (4) 

and verifier V sends e to the proxy signer sP . 

 After receiving e,  sP  computes the following 

                                nests mod).(~           (5) 

and sends it to V . 
  Now V computes 

nss p mod)~(                            (6) 

The tuples )~,,( esM p  is the proxy blind signature. 

6.3 Verification Phase 

The verifier V computes the following equation. 

             )).~.(( MQePsH pp           (7) 

and verifies the validity of proxy blind signature 

)~,,( esM p  with the equality e~ . 

7 Security Analyses 

7.1 Security Notions 

Theorem 1 It is infeasible for adversary A to derive 
signer's private key from all available public information. 
 
Proof: Assume that the adversary A wants to derive 
signer's private key d from his public key Q, he has to 
solve ECDLP problem which is computationally 
infeasible. Similarly, the adversary will encounter the 
same difficulty as she/he tries to obtain proxy signer's 
private key. 
 
Theorem 2 Proxy signature is distinguishable from 
original signer's normal signature. 
  
Proof: Since proxy key is different from original signer's 
private key and proxy keys created by different proxy 
signers are different from each other, any proxy signature 
is distinguishable from original signer's normal signature 
and different proxy signer's signature are distinguishable. 
 
Theorem 3 The scheme satisfies Unlinkability security 
requirement. 
 
Proof: In verification stage, the signer checks only 

whether )).~.(( MQePsH pp   holds. 

He does not know the original signer's private key and 
proxy signer's private key. Thus the signer knows neither 
the message nor the signature associated with the signature 
scheme. 

8. Correctness 

Theorem 4 The proxy blind signature )~,,( esM p  is 

universally verifiable by using the system Public 
parameters. 
 
Proof: The proof of correctness of the signature is verified 
as follows.  We have to prove that 
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9. Implémentation Issues 

In this section we have discussed implementation issues, 
i:e. efficiency and size of the hard-ware. The basic 
operation for Cryptographic Protocols based on ECDLP; it 
is easily performed via repeated group operation. One can 
visualize these operations in a hierarchical structure. Point 
multiplication is at top level. At the next lower level is the 
point operations, which are closely related to coordinates 
used to represent the points. The lowest level consists of 
finite field operations such as addition, subtraction, 
multiplication and inversion. 

9.1 Group Order 

The order of the elliptic curve group over the underlying 
field is an important security parameter. There are attacks 
(for example Pohlig-Hellman attack) which can be 
launched on ECC if the group order is not divisible by a 
very large prime. In fact the Pohlig-Hellman attack 
dictates that the group order for ECC should be product of 
a large prime multiplied by a small positive integer less 
than 4. This small number is called cofactor of the curve. 
Various algorithms have been proposed in literature (for 
example Kedlaya's algorithm for ECC and Schoof's 
algorithm for ECC) for efficiently counting the group 
order. The group order of an elliptic curve is given by 
Hasse's theorem. 
 
Theorem 5. Let E be an elliptic curve over a finite field 

pF of order q. Then the order )(# pFE   of the elliptic 

curve group is given by  
2/12||,1)(# qtwheretqFE p   

The parameter t is called trace of E over pF . An 

interesting fact is that given any integer, there exists an 

elliptic curve E over pF  such that tqFE p  1)(# . 

10. Point Representation and Cost of Group 
Operations 

Point addition and point doubling are two important 
operations in ECC. Inversion in a finite field is an 
expensive operation. To avoid these inversions, several 
point representations have been proposed in literature. The 
cost of point addition and doubling varies depending upon 
the representation of the group elements. In the current 
section, we will briefly deal with some point 
representations commonly used. Let [i], [m], [s], [a] stand 
for cost of a field element inversion, a multiplication, a 
squaring and an addition respectively. Field element 
addition is considered to be a very cheap operation. In 
binary fields, squaring is also quite cheaper than a 
multiplication. If the underlying field is represented in 
normal basis then squaring is almost for free. Inversion is 
considered to be 8 to 10 times costlier than a 
multiplication in binary fields. In prime field the I/M ratio 
is even more. It is reported to be between 30 and 40 . 

10.1 Elliptic Curves 

Point representation in ECC is a well studied area. In the 
following two sections we describe some of the point 
representation popularly used in implementations. Table 1. 
Cost of Group Operations in ECC for Various Point 
Representations for Characteristic > 3 
 
Coordinates Cost 

(Addition) 
Coordinates Cost 

 (Doubling) 

CCC

JJJ

PPP

AAA






 

][3][11

][4][12

][2][12

][1][2][1

sm

sm

sm

smi







 

CC

JJ

PP

AA






2

2

2

2

 

][4][5

][4][6

][3][7

][2][2][1

sm

sm

sm

smi







 

 
Fields of Characteristic > 3 Elliptic curves over fields of 
characteristic > 3 have equations of the form 

.32 baxxy   For such curves the following point 

representation methods are mostly used. 
 

1. In Standard Projective Coordinates the curve 
has equation of the form 

3232 bZaXZXZY    

The point )::( ZYX , with 0Z  in projective 

coordinates is the point (X/Z, Y/Z) in affine 
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coordinates. The point at infinity is represented 
by the point (0: 1: 0) and the inverse of (X: Y: Z) 
is the point (X: -Y: Z). 

 
2. In Jacobian Projective Coordinates the curve 

has equation of the form  
6432 bZaXZXZY  . 

The point, 0Z  in Jacobian coordinates 

correspond to the affine point )/,/( 32 ZYZX . 

The point at infinity is represented by the point 
(1: 1: 0) and the inverse of )::( ZYX  is the 

point )::( ZYX  . Point doubling becomes 

cheaper in Jacobian coordinates if the curve 
parameter a = -3.  

 
3. In Chudonovski Jacobian Coordinates, the 

Jacobian point )::( ZYX  is represented as 

)::::( 32 ZZZYX . Cost of point addition in 

Chudonovski Jacobian coordinates is the 
minimum among all representations.  

 
In Table 1, we present the cost of addition and 
doubling in the coordinate systems described above. 
In the table we use CJPA ,,,  for affine, projective, 

Jacobian and Chudnovski Jacobian respectively. 
By AA2 , we mean the doubling formula in 
which the input is in affine and so is the output. 
Similarly for addition and other coordinate systems.  
 
Fields of Characteristic 2 We will consider only 
non-super singular curves. Elliptic curves (non-super 
singular) over binary fields have equations of the 

form baxxxyy  232 . For such curves the 

following point representation methods are mostly 
used.   

 
1. In Standard Projective Coordinates the curve 

has equation of the form  
3232 bZZaXXXYZZY   

The point )::( ZYX , with Z   0 in projective 

coordinates is the point (X=Z, Y=Z) in affine 
coordinates. The point at infinity is represented 
by the point (0: 1: 0) and the inverse of  

)::( ZYX  is the point (X: X + Y: Z).  

 
2. In Jacobian Projective Coordinates the curve 

has equation of the form  
62232 bZZaXXXYZY   

The point )::( ZYX , with Z   0 in Jacobian 

coordinates correspond to the affine point 

)/,/( 32 ZYZX . The point at infinity is 

represented by the point (1 : 1 : 0) and the inverse 
of )::( ZYX  is the point (X : X + Y : Z).  

 
3. In Lopez-Dahab Coordinates, the point 

)::( ZYX , with Z   0 represents the affine 

point )/,/( 2ZYZX . The equation of the 

elliptic curve in this representation is 

.42232 bZZaXZXXYZY   The point 
at infinity is represented by the point (1 : 0 : 0) 
and the inverse of (X : Y : Z) is the point (X : X + 
Y : Z).  

 
In Table 2 we present the cost of addition and doubling in 
the coordinate systems over binary fields. In the table we 
use A, P, J , L for affine, projective, Jacobian and Lopez-
Dahab respectively. The table follows the same notational 
convention as in last subsection. Note that in Table 2 we 
have neglected squaring also. That is because in binary 
fields squaring is a much cheaper operation than 
multiplication, if one point is in affine and the other is in 
projective or some other weighted co-ordinate, then point 
addition becomes relatively cheaper. This operation is 
called addition in mixed coordinates or mixed addition. In 
ECC, the base point is generally stored in affine 
coordinates to take advantage of mixed additions.  
Table 2. Cost of Group Operations in ECC for Various 
Point Representations in Even Characteristics  
Coordinates Cost 

(Addition) 
Coordinates Cost 

(Doubling) 

LLL

JJJ

PPP

AAA






 

][14

][14

][13

][2][1

m

m

m

mi 

 

LL

JJ

PP

AA






2

2

2

2

 

][4

][5

][3][7

][2][1

m

m

sm

mi




 

 

11. Scalar Multiplications 

In ECC, computationally the most expensive operation is 
scalar multiplication. It is also very important from 
security point of view. The implementation attacks 
generally target the computation of this operation to break 
the cryptosystem. Given a point X and a positive integer 
m, computation of m   X = X + …… (m times)….. + X is 
called the operation of scalar multiplication. In this section 
we briefly outline various scalar multiplication algorithms 
proposed in literature. We do not include multi scalar 
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multiplication methods (i.e. methods to compute (lP + 
mQ). Also, due to the vastness of the subject and space 
constraints we will elaborate only those methods which 
are discussed in depth in this dissertation. The basic 
algorithms to compute the scalar multiplication are the age 
old binary algorithms. They are believed to have been 
known to the Egyptians two thousand years ago. The two 
versions of DBL-AND-ADD algorithm are defined above. 
These algorithms invoke two functions ADD and DBL. 

ADD takes as input two points 1X  and  2X and return 

their sum 21 XX  , DBL takes as input one point X and 

computes its double 2X.  
_______________________________________________ 
Algorithm DBL-AND-ADD (Left-to-right binary method) 
_______________________________________________ 

Input: X, m ),....( 011 mmmk  

Output: mX. 

1. E = Xmk 1  

2. for i = k-2 down 0 
3.     E = DBL(E) 

4.    if 1im  

5.               E = ADD(E, X) 
6. return E 

_______________________________________________ 
_______________________________________________ 
Algorithm DBL-AND-ADD (Right-to-left binary method) 
_______________________________________________ 

Input :  X, m , ),....( 011 mmmk   

Output : mX.  
 

1. 0, 10  EXE  

2. for i = 0 to k-1 

3.      if 1im  

4.         ),( 101 EEADDE   

5.    )( 00 EDBLE   

6. return )( 1E  

 
Both the algorithms first convert the scalar multiplier m 
into binary. Suppose m has a n-bit representation with 
hamming weight h. Then, mX can be computed by n-1 
invocations of DBL and h - 1 invocations of ADD. Hence 
cost of the scalar multiplication is 

)(cos)(cos)1( ADDthDBLtn   .As the 

average value of h is n=2, on the average these algorithms 
require (n - 1) doubling and n=2 additions. As doublings 
are required more often than additions, attempts are made 
to reduce complexity of the doubling operation.  
 

The scalar multiplication is the dominant operation in 
ECC. Extensive research has been carried out to compute 
it efficiently and a lot of results have been reported in 
literature. To compute the scalar multiplication efficiently 
there are three main approaches. As is seen in the basic 
binary algorithms the efficiency is intimately connected to 
the efficiency of ADD and DBL algorithms. So the first 
approach is to compute group operations efficiently. The 
second approach is to use a representation of the scalar 
such that the number of invocation of group operation is 
reduced. The third approach is to use more hardware 
support (like memory for pre-computation) to compute it 
efficiently. In some proposals these have approaches have 
been successfully combined to yield very efficient 
algorithms. As noted in the above, the cost of ADD and 
DBL depend to a large extent on the choice of underlying 
field and the point representation. Hence the cost of scalar 
multiplication also depends upon these choices. Based on 
the underlying field more efficient operations have been 
proposed. Over binary fields for ECC, using a point 
halving algorithm instead of DBL has been proved to be 
very efficient. Over fields of characteristic 3, point tripling 
has been more efficient. There are proposals for using 
fancier algorithms like the ones efficiently computing 2P 
+ Q, 3P + Q etc. instead of ADD and DBL.  

12. Conclusions 

The security of the scheme is hardness of solving ECDLP. 
The primary reason for the attractiveness of ECC over 
systems such as RSA and DSA is that the best algorithm 
known for solving the underlying mathematical problem 
namely, the ECDLP takes fully exponential time. In 
contrast, sub-exponential time algorithms are known for 
underlying mathematical problems on which RSA and 
DSA are based, namely the integer factorization (IFP) and 
the discrete logarithm (DLP) problems. This means that 
the algorithms for solving the ECDLP become infeasible 
much more rapidly as the problem size increases more 
than those algorithms for the IFP and DLP. For this 
reason, ECC offers security equivalent to RSA and DSA 
while using far smaller key sizes. The benefits of this 
higher-strength per-bit include higher speeds, lower power 
consumption, bandwidth savings, storage efficiencies, and 
smaller certificates. This can be implemented in low 
power and small processor mobile devices such as smart 
card, PDA etc. In this proposed scheme it is infeasible for 
adversary to derive signer's private key from all available 
public information. This protocol also achieves the 
security like requirements distinguishability, strong 
unforgeability, non-repudiation, and unlinkability. 
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