Guide Lines and Practice for Thermal Design of Heat Exchangers by

Prof. Abdul Rahim Assaad Khaled

Definition of Engineering Design

It is simply finding the appropriate **size** of an engineering system that satisfies predetermined **outputs** fulfilling the user **needs** under specific **constraints** imposed on the user, the designer or both.

ABET EAC Definition of Engineering Design

Engineering design is the process of devising a system, component, or process to meet desired needs. It is a decisionmaking process (often iterative), in which the basic sciences, mathematics, and the engineering sciences are applied to convert resources optimally to meet these stated needs.

Heat Exchanger can be considered as a system or component.

Quality of the Engineering Design

- High Quality Design can be the system size that achieves all of the costumers and users needs satisfying all of imposed constraints at minimum cost.
- Acceptable Quality Design can be the system size that achieves direct users needs satisfying all of imposed constraints at available price.

The **SiZe** of heat exchanger includes its dimensions such as length, diameters, height, width, thickness, material type, flow configuration, number of heat exchanging units, fin distribution, ...etc.

Outputs of heat exchangers include its heat duty (heat transfer rate), LMTD requirements (Log Mean Temperature Difference).....

Outputs are the process requirement

User **needs** of heat exchanger include types of fluids, quality of fluids (fouled fluids, clean fluids,...etc.)...etc.

Note that user needs are their outputs. The role of engineering designers is to convert the user needs into the heat exchanger outputs

- **Constraints** imposed on design of heat exchangers include the following:
- Acoustic noise control during operation
- Flow turbulence control during operation
- Pumping power requirements
- Spatial dimensions requirements
- Availability of materials and standards
- Availability of know and how technology

Acoustic Noise Constraints

United States Department of Labor; 1910.95(b)(2)

TABLE G-16 - PERMISSIBLE NOISE EXPOSURES (1)

Duration per day, hours	Sound level dBA slow response
8	90 92 95
3 2	97 100 102
1/2 1/2 or less	105 110 115

Noise and Vibration Design Guidance (1)

HVAC noise in an accommodation compartment should be a minimum 3 dB below the any specified noise criteria

Noise generation in HVAC system occurs from four basic sources:

- Fans and Blowers
- Flow through Branches
- Flow through Turns
- Flow through Diffusers

http://uhaweb.hartford.edu/BEAUDRY/designguides/NCEDesignGuide_HVAC.pdf

Noise and Vibration Design Guidance (2)

A summary of the general rules are listed below:

- Air flow velocities should be kept as low as possible. A target should be velocities no higher than 1,000 ft/min., and never exceed 3,000 ft/min.
- Fan inlet air flow should be straight for at least 3 duct diameters. Turns closer than 3 diameters cause air flow turbulence which increases noise.
- The fan discharge should be straight for a distance of at least three major duct widths to avoid turbulence. Noise will significantly increase due to turbulence from elbows too close to the discharge (or inlet).
- 4. Five to ten diameters of straight duct is required for turbulence to die out and flow to equalize. If the air flow does not become smooth before the next fitting or terminal device, the flow noise generated in the next element will increase.
- Design the HVAC system so that fans operate near peak efficiency. Fans that do not operate near peak efficiency will have higher noise levels than fans operating at peak efficiency.
- All ventilation fans should be resiliently mounted and all connections to the fan, including ducting and electrical cables, should be flexible and at least as effective as the vibration isolators.

...continued

http://uhaweb.hartford.edu/BEAUDRY/designguides/NCEDesignGuide_HVAC.pdf

Maximum Flow Velocities in Water Systems

The fluid flow velocities in water systems should not exceed certain limits to avoid noise and damaging wear and tear of pipes and fittings. The table below can be used as guidance to maximum velocities:

Application	Maximum Velocity				
Application	(m/s)	(ft/s)			
Tap water (low noise)	0.5 - 0.7	1.6 - 2.3			
Tap water	1.0 - 2.5	3.3 - 8.2			
Cooling water	1.5 - 2.5	4.9 - 8.2			
Suction boiler feed water	0.5 - 1.0	1.6 - 3.3			
Discharge boiler feed water	1.5 - 2.5	4.9 - 8.2			
Condensate	1.0 - 2.0	3.3 - 6.5			
Heating circulation	1.0 - 3.0	3.3 - 9.8			

http://www.engineeringtoolbox.com/flow-velocity-water-pipes-d_385.html

Water Delivery Flow Velocities

As a rule of thumb the following velocities can be used in design of piping and pumping systems for water:

Pipe Dir	mension	Water			
inches	mm	m/s	ft/s		
1	25	1	3.5		
2	50	1.1	3.6		
3	75	1.15	3.8		
4	100	1.25	4		
6	150	1.5	4.7		
8	200	1.75	5.5		
10	250	2	6.5		
12	300	2.65	8.5		

http://www.engineeringtoolbox.com/pump-delivery-flow-velocity-water-d_232.html

TEMA, Inc. Standards.... (1)

TEMA, Inc.: Tabular Exchanger Manufacturers Association, Inc.

5	RCB	MECHANICAL STANDARD TEMA CLASS RCB HEAT EXCHANGERS	
	1	Scope and General Requirements	5.1-1
	2	Tubes	5.2-1
	3	Shells and Shell Covers	5.3-1
	4	Baffles and Support Plates	5.4-1
	5	Floating End Construction	5.5-1
	6	Gaskets	5.6-1
	7	Tubesheets	5.7-1
	8	Flexible Shell Elements	5.8-1
	9	Channels, Covers, and Bonnets	5.9-1
	10	Nozzles	5.10-1
	11	End Flanges and Bolting	5.11-1

http://www.tema.org/

TEMA, Inc. Standards....(2)

TEMA, Inc.: Tabular Exchanger Manufacturers Association, Inc.

6	V	FLOW INDUCED VIBRATION (continued)	
	9	Shell Side Velocity Distribution	6-15
	10	Estimate of Critical Flow Velocity	6-18
	11	Vibration Amplitude	
	12	Acoustic Vibration	
	13	Design Considerations	
	14	Selected References	
7	Т	THERMAL RELATIONS	
	1	Scope and Basic Relations	7-1
	2	Fouling	7-2
	3	Fluid Temperature Relations	
	4	Mean Metal Temperatures of Shell and Tubes	7-5

http://www.tema.org/

TEMA, Inc. Standards....(3)

http://www.tema.org/

Basic Types of Heat Exchangers

- Double-Pipe heat Exchangers
- Shell-and-Tube Heat Exchangers
- Compact Heat Exchangers
- Gasketed-Plate Heat Exchangers

Double-Pipe heat Exchangers

FIGURE 11.1 Concentric tube heat exchangers. (a) Parallel flow. (b) Counterflow.

¹⁹ Incropera – Fundamentals of Heat and Mass Transfer, 6th Edition

Shell-and-Tube Heat Exchangers

FIGURE 11.3 Shell-and-tube heat exchanger with one shell pass and one tube pass (cross-counterflow mode of operation).

²⁰ Incropera – Fundamentals of Heat and Mass Transfer, 6th Edition

Compact Heat Exchangers

FIGURE 11.5 Compact heat exchanger cores. (a) Fin-tube (flat tubes, continuous plate fins).
(b) Fin-tube (circular tubes, continuous plate fins). (c) Fin-tube (circular tubes, circular fins).
(d) Plate-fin (single pass). (e) Plate-fin (multipass).

²¹ Incropera – Fundamentals of Heat and Mass Transfer, 6th Edition

Basic Design Methods of Heat Exchangers.....1

LMTD method

$$Q = \dot{m}_{h} (i_{h1} - i_{h2}) = \dot{m}_{c} (i_{c2} - i_{c1}) = UAF \Delta T_{lm,cf}$$
$$\Delta T_{lm,cf} = \frac{(T_{h2} - T_{c1}) - (T_{h1} - T_{c2})}{ln \left(\frac{T_{h2} - T_{c1}}{T_{h1} - T_{c2}}\right)}; \quad F \equiv \frac{\Delta T_{lm}}{\Delta T_{lm,cf}};$$

 $F = \phi(P, R, flow arrangement)$

$$\Delta T_{lm,cf} = \frac{(T_{h2} - T_{c1}) - (T_{h1} - T_{c2})}{ln \left(\frac{T_{h2} - T_{c1}}{T_{h1} - T_{c2}}\right)}$$

Basic Design Methods of Heat Exchangers.....2

FIGURE 11.6 Overall energy balances for the hot and cold fluids of a two-fluid heat exchanger.

²³ Incropera – Fundamentals of Heat and Mass Transfer, 6th Edition

Basic Design Methods of Heat Exchangers.....3

ε-NTU method

$$C_{r} = \frac{C_{min}}{C_{max}}; \quad C_{min} = MIN[\dot{m}_{c}c_{pc};\dot{m}_{h}c_{ph}];$$

$$C_{max} = MAX[\dot{m}_{c}c_{pc};\dot{m}_{h}c_{ph}]; \quad \varepsilon = \frac{Q}{C_{min}(T_{h1} - T_{c1})};$$

$$NTU = \frac{UA}{C_{min}}; \quad \varepsilon = \phi(NTU, C_{r}, flow arrangement);$$

TABLE 11.4 Heat Exchanger NTU Relations

Flow Arrangement	Relation				
Concentric tube					
Parallel flow	$\text{NTU} = -\frac{\ln\left[1 - \varepsilon(1 + C_r)\right]}{1 + C_r}$	(11.28b)			
Counterflow	$\text{NTU} = \frac{1}{C_r - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon C_r - 1} \right) (C_r < 1)$				
	$NTU = \frac{\varepsilon}{1 - \varepsilon} \qquad (C_r = 1)$	(11.29b)			
Shell-and-tube					
One shell pass $(2, 4)$ tube passes)	$(\text{NTU})_1 = -(1+C_r^2)^{-1/2} \ln\left(\frac{E-1}{E+1}\right)$	(11.30b)			
(2, 4, tube passes)	$E = \frac{2/\varepsilon_1 - (1+C_t)}{(1+C_t^2)^{1/2}}$	(11.30c)			
n Shell passes	Use Equations 11.30b and 11.30c with				
$(2n, 4n, \ldots$ tube passes)	$\varepsilon_1 = \frac{F-1}{F-C_r}$ $F = \left(\frac{\varepsilon C_r - 1}{\varepsilon - 1}\right)^{1/n}$ NTU = n (NT)	ΓU) ₁ (11.31b, c, d)			
Cross-flow (single pass)					
C_{\max} (mixed), C_{\min} (unmixed)	$NTU = -\ln\left[1 + \left(\frac{1}{C_r}\right)\ln(1 - \varepsilon C_r)\right]$	(11.33b)			
C_{\min} (mixed), C_{\max} (unmixed)	$NTU = -\left(\frac{1}{C_r}\right) \ln[C_r \ln(1-\varepsilon) + 1]$	(11.34b)			
All exchangers $(C_r = 0)$	$NTU = -\ln(1-\varepsilon)$	(11.35b)			

Incropera – Fundamentals of Heat and Mass Transfer, 6th Edition

25

Flow Arrangement	Relation	1	
Parallel flw	$e = \frac{1 - \exp\left[-NTU(1 + C_r)\right]}{1 + C_r}$		(11.28a)
Counterfiw	$E = \frac{1 - \exp[-NTU(1 - C_r)]}{1 - C_r \exp[-NTU(1 - C_r)]}$	(C _r < 1)	
	$e = \frac{\text{NTU}}{1 + \text{NTU}}$	$(C_{r} = 1)$	(11.29a)
Shell-and-tube			
One shell pass (2, 4, tube passes)	$\varepsilon_1 = 2 \left[1 + C_r + (1 + C_r^2)^{5/2} \times \frac{1 + \epsilon}{1 - \epsilon} \right]$	$\frac{\exp\left[-(\mathrm{NTU})_{1}(1+C_{r}^{2})^{1/2}\right]}{\exp\left[-(\mathrm{NTU})_{1}(1+C_{r}^{2})^{1/2}\right]}$	(11.30a)
<i>n</i> shell passes $(2n, 4n, \ldots$ tube passes)	$\varepsilon = \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - 1 \right] \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n \right]$	$\left[-C_r\right]^{-1}$	(11.31a)
Cross-flw (single pass)			
Both fluids unmixed	$e = 1 - \exp\left[\left(\frac{1}{C_r}\right)(NTU)^{0.22} \left\{\exp\left[-\frac{1}{C_r}\right]\right\}\right]$	$-C_r(NTU)^{0.78}] = 1$	(11.32)
C_{\max} (mixed), C_{\min} (unmixed)	$e = \left(\frac{1}{C_r}\right)(1 - \exp\left(-C_r\left[1 - \exp\left(-1\right)\right]\right)$	NTU)]})	(11.33a)
C_{\min} (mixed), C_{\max} (unmixed)	$e = 1 - \exp(-C_r^{-1}[1 - \exp[-C_r(N)])$	[U)]])	(11.34a)
All exchangers $(C_r = 0)$	$w = 1 - \exp\left(-NTU\right)$		(11.35a)

TABLE 11.3 Heat Exchanger Effectiveness Relations [5]

26

Incropera – Fundamentals of Heat and Mass Transfer, 6th Edition

Basic Correlations used in Designing of Heat Exchangers...1

Pressure drop

$$\Delta p = 4f_a \frac{L}{D} \rho \frac{u_m^2}{2}$$

$$pe: f_a = \frac{16}{Re_p}$$

Laminar flow in a circular tube:

Turbulent flow in a smooth circular tube:

$$f_a = [1.58 \ln(Re_D) - 3.28]^{-2}, \quad 3000 \le Re_D \le 5 \times 10^6$$

Turbulent flow in a roughened circular tube (e: surface roughness):

$$\frac{1}{\sqrt{f_a}} \cong -3.6 \log_{10} \left[\frac{6.9}{Re_D} + \left(\frac{e/D}{3.7} \right)^{1.11} \right]$$

Pumping power requirement

$$\dot{P} = \frac{\dot{m}\Delta p}{\rho \eta_p}$$

 η_p : Pump total efficiency

27

Basic Correlations used in Designing of Heat Exchangers...2

 p_I

Laminar flow in a <u>circular tube</u>

 $Nu_{D} = 1.86 \left(\frac{Re_{D} Pr D}{L}\right)^{1/3} \left(\frac{\mu_{b}}{\mu_{s}}\right)^{0.14}$ **Turbulent flow** in a <u>circular tube</u>

$$Gnielinski \ correlation$$
$$Nu_{D} = \frac{(f_{a}/2)(Re_{D} - 1000)Pr}{1 + 12.7(f_{a}/2)^{1/2}(Pr^{2/3} - 1)}$$

 $3 \times 10^3 \le Re_D \le 5 \times 10^6$, $0.5 \le Pr \le 2000$

28

Basic Correlations used in Designing of Heat Exchangers...3

 P_w : Wetted perimeter; P_h : Heat transfer perimeter

<u>Developing</u> <u>Laminar</u> flow

$$\begin{split} Nu_{D_{e,o}} &= \frac{\overline{h_o} D_{e,o}}{k_o} = 1.86 \bigg(\frac{Re_{D_{h,o}} Pr_o D_{h,o}}{L} \bigg)^{1/3} \bigg(\frac{\mu_{b,o}}{\mu_{s,o}} \bigg)^{0.14} \\ \hline \mathbf{Turbulent} \ \mathbf{fully} \ \mathbf{developed} \ \mathbf{flow} \\ Nu_{D_{e,o}} &= \frac{(f_{a,o}/2) (Re_{D_{h,o}} - 1000) Pr_o}{1 + 12.7 (f_{a,o}/2)^{1/2} (Pr_o^{2/3} - 1)} \\ 3 \times 10^3 \le Re_{D_{h,o}} \le 5 \times 10^6, \quad 0.5 \le Pr_o \le 2000 \\ 29 \end{split}$$

Cross section view of bare lubes inside shell

Basic Correlations used in Designing of Heat Exchangers...4

transfer area/total volume = 587 m²/m³. (From Kays, W. M. and London, A. L. [1984], Compact

Heat Exchangers, 3rd ed., McGraw-Hill, New York. With permission.)

30

Bare circular fouled tubes of <u>N_t</u> **number of tubes**

$$\begin{aligned} \frac{1}{U_o} &= \frac{1}{h_o} + R_{fo} + \frac{d_o \ln(d_o/d_i)}{2k_{tube}} + \left(\frac{d_o}{d_i}\right) R_{fi} + \left(\frac{d_o}{d_i}\right) \frac{1}{h_i} \\ \frac{1}{U_i} &= \left(\frac{d_i}{d_o}\right) \frac{1}{h_o} + \left(\frac{d_i}{d_o}\right) R_{fo} + \frac{d_i \ln(d_o/d_i)}{2k_{tube}} + R_{fi} + \frac{1}{h_i} \end{aligned}$$

$$\begin{aligned} A_o &= \pi d_o N_t L; \qquad A_i = \pi d_i N_t I \\ \frac{A_{of}}{A_{oc}} &= \frac{U_{oc}}{U_{of}} = 1 + U_{oc} R_{ft} \ge 1.0 \end{aligned}$$

 U_{of} : Overall heat transfer coefficient based on fouled condition U_{oc} : Overall heat transfer coefficient based on clean condition

Finned circular fouled tubes of <u>N_t number of tubes (rectangular fins</u>)

 $\frac{1}{U_o} = \frac{1}{\eta_o h_o} + \frac{R_{fo}}{\eta_o} + \frac{A_o \ln(d_o/d_i)}{2\pi k_{tube} N_t L} + \left(\frac{A_o}{A_i}\right) \frac{R_{fi}}{\eta_i} + \left(\frac{A_o}{A_i}\right) \frac{1}{\eta_i h_i}$ $A_o = \left(\pi d_o + 2H_{fo} N_{fo}\right) N_t L,$

$$A_{fo} = \left(2H_{fo} + \delta_o\right)N_{fo}N_tL,$$

$$\eta_{o} = 1 - \left(1 - \eta_{fo}\right) \frac{A_{fo}}{A_{o}}; \quad \eta_{i} = 1 - \left(1 - \eta_{fi}\right) \frac{A_{fo}}{A_{i}};$$

 (η_o, η_i) : (outer, inner) surface efficiency

 $_{33}$ (η_{f_0}, η_{f_1}) : (outer, inner) fin thermal efficiency

Finned circular fouled tubes of Nt number of tubes (rectangular fins)

$$\eta_{fo} = \frac{tanh\left[\left[H_{fo} + \delta_{o}/2\right]\sqrt{\frac{2h_{o}}{k_{fin,o}\delta_{o}}}\right]}{\left[H_{fo} + \delta_{o}/2\right]\sqrt{\frac{2h_{o}}{k_{fin,o}\delta_{o}}}}{\left[H_{fi} + \delta_{i}/2\right]\sqrt{\frac{2h_{i}}{k_{fin,i}\delta_{i}}}}{\left[H_{fi} + \delta_{i}/2\right]\sqrt{\frac{2h_{i}}{k_{fin,i}\delta_{i}}}}$$

$$\eta_{fi} = \frac{tanh\left[\left[H_{fi} + \delta_{i}/2\right]\sqrt{\frac{2h_{i}}{k_{fin,i}\delta_{i}}}\right]}{\left[H_{fi} + \delta_{i}/2\right]\sqrt{\frac{2h_{i}}{k_{fin,i}\delta_{i}}}}$$

$$(u, v) = 0$$

35

Standard shell types and front- and rear-end head types (From TEMA, 1999).

Heat Exchanger and Condenser Tube Data

					Surfac	e Area	Cross-S A	ectional rea
Nominal Pipe Size (in.)	Outside Diameter (in.)	Schedule Number or Weight	Wall Thickness (in.)	Inside Diameter (in.)	Outside (ft.3/ft.)	Inside (ft.¥ft.)	Metal Area (in.)	Flow Area (in.²)
		40	0.113	0.824	0.275	0.216	0.333	- 0.533
3/4	1.05	80	0.154	0.742	0.275	0.194	0.434	0.432
		40	0.133	1.049	0.344	0.275	0.494	0.864
1	1.315	80	0.179	0.957	0.344	0.250	0.639	0.719
00000		40	0,140	1.38	0.434	0.361	0.668	1.496
1-1/4	1.660	80	0.191	1.278	0.434	0.334	0.861	1.283
12		40	0.145	1.61	0.497	0.421	0.799	2.036
1-1/2	1.900	80	0,200	1.50	0.497	0.393	1.068	1.767
		40	0.154	2.067	0.622	0,541	1.074	3.356
2	2.375	80	0.218	1.939	0.622	0.508	1.477	2.953
12000040	301255121	40	0.203	2.469	0.753	0.646	1.70-1	4.79
2-1/2	2,875	60	0.276	2.323	0.753	0.608	2.254	4.24
		40	0.216	3.068	0.916	0.803	2.228	7.30
3	3.5	80	0.300	2.900	0.916	0.759	3.106	6.60
		40	0.226	3,548	1.047	0.929	2.680	9.89
3-1/2	4.0	80	0.318	3.364	1.047	0,881	3.678	8.89
-	10.00	40	0.237	4.026	1.178	1.054	3.17	12.73
4	4.5	80	0.937	3.826	1.178	1.002	4.41	11.50
		105	0.134	5.295	3.456	1.386	2.29	22.02
5	5.563	40	0.258	5.047	1.456	1.321	4.30	20.01
		80	0.375	4.813	1.456	1.260	6.11	18.19
		10 5	0.134	6.357	1.734	1,664	2.73	31.7
6	6.625	40	0.280	6.065	1,734	1.588	5.58	28.9
		80	0.432	5.961	1.734	1.508	8.40	26.1
		10 8	0.148	8.329	2.258	2.180	3.94	54.5
8	8.625	30	0.277	8.071	2.258	2.113	7.26	51.2
		80	0.500	7.625	2.258	1.998	12.76	45.7
		105	0.165	10.420	2.81	2.73	5.49	85.3
10	10.75	30	0.279	10,192	2.61	2,67	9.18	0.16
		Exita heavy	0.500	9,750	2.81	2.55	16.10	74.7
	10.05	iu s	0.180	12.390	3.34	3.24	7.11	120.6
	12.75	30	0.330	12.09	3.34	3.17	12.88	119.8
		Extra heavy	0.500	11.75	3.34	3.08	19.24	108.4
		10	0.250	13.5	3.67	3.53	10.80	145.1
14	16.0	Standard	0.3/5	13.25	3.07	3.47	16.05	137.9
		Extra neavy	0.500	13,00	3.67	3.40	21.21	132.7
10	160	10 Cum danað	0.250	15.50	4.19	4.06	12.37	188.7
10	16.0	Standard	0.375	15.25	9.19	3.99	15.41	104.7
		to e	0.500	12 404	9.19	3.93	24.55	1/0./
18	10.0	Cunderd	0.185	17.024	4.71	4.01	10.52	243.9
10	10,0	Extra heavy	0.500	17.00	4.71	4.45	27.49	227.0

Source: Courtesy of the Tubular Exchanger Manufacturers Association.

Dimensional Data for Commercial Tubing

Dimensional Data for Commercial Tubing

OD of Tubing (in.)	BWG Gauge	Thickness (in.)	Internal Flow Area (in.²)	Sq. Ft. External Surface per Ft. Length	Sq. Fi. Internal Surfaco per Fi. Length	Welght per Ft. Length, Steel (Ib.)	ID Tubing (in.)	OD/ID	OD of Tubing	BWG	Thickness	Internal Flow Area	Sq. Ft. External Surface per Ft.	Sq. Ft. Internal Surface per Ft.	Weight per Fi. Length, Steel	ID Tubing	0040
1/4	22	0.028	0.0295	0.0655	0.0508	0.066	0.194	1.289	(in.)	Gauge	(in.)	(in.²)	Length	Length	(10.)	(m.)	UD/ID
1/4	24	0.022	0.0333	0.0655	0.0539	0.054	0.206	1.214	1	18	0.049	0.6390	0.2618	0.2361	0.496	0.902	1.109
1/4	20	0,018	0.0360	0.0655	0.0360	0.095	0.214	1.105	1	20	0.035	0.6793	0.2618	0.2435	0.360	0.930	1.075
3/8	20	0.035	0.0731	0.0982	0.0298	0.127	0.305	1.233	1 1/4		0,000	0.6001	0.3373	0.2330	2 057	0.890	1.404
3/8	22	0.028	0.0799	0.0982	0.0835	0.104	0.319	1.176	1-1/9	1	0.160	0.0221	0,5272	0.2350	1.001	0.020	1 356
3/8	24	0.022	0.0860	0.0982	0.0867	0.083	0.331	1.133	1-1/4	8	0.165	0.6648	0.3272	0.2409	1.921	0.920	1.305
1/2	16	0.065	0.1075	0.1309	0.0969	0.302	0.370	1.351	1-1/4	10	0,134	0,7574	0.3272	0.2571	1.598	0,982	1,273
1/2	18	0.049	0.1269	0.1309	0.1052	0,236	0.402	1.244	1-1/4	11	0.120	0.8012	0.3272	0.2644	1.448	1.010	1.238
1/2	20	0.035	0.1452	0.1309	0,1126	0.174	0.430	1.163	1-1/4	12	0.109	0.8365	0.3272	0.2702	1.329	1.032	1,211
1/2	22	0.028	0.1548	0.1309	0.1162	0,141	0.444	1.126	1 1 1 1	10	0.005	0.9895	0.9972	0.9773	1.173	1.060	1,179
5/8	12	0.109	0.1301	0.1635	0.1066	0.602	0.407	1.536	1-1/4	12	0,095	0.8623	0.5272	0.2773	4 000	1.004	4 129
5/8	1.0	0,093	0.1460	0.1630	0.1139	0.537	0,435	1,937	1-1/4	16	0.083	0.9229	0.3272	0.2838	1,033	1.064	1,103
5/8	15	0.072	0.1817	0.1636	0.1252	0.425	0.481	1 202	1-1/4	16	0,065	0.9852	0.3272	0.2932	0.823	1.120	1,116
5/8	16	0.065	0.1924	0.1636	0.1296	0.388	0.49a	1.263	1-1/4	18	0.049	1.042	0.3272	0.3016	0,629	1,152	1.085
5/8	17	0.058	0.2035	0.1636	0.1333	0.350	0.509	1.228	1.174	20	0.035	1.094	0.3272	0.3069	0.456	1.180	1.059
5/8	18	0.049	0.2181	0.1636	0.1380	0,303	0.527	1.186	1-1/0	10	0.525	1 100	0.0007	0 3325	1 055	1 292	1 218
5/8	19	0.042	0.2298	0.1636	0.1416	0.262	0.541	1.155	1-1/2	10	0,132	1,192	0.3927	0.0220	1,500	1,000	3,370
5/8	20	0.035	0.2419	0.1636	0.1453	0.221	0.555	1.136	1-1/2	12	0.109	1.291	0.3927	0.3356	1,618	1.282	1.170
3/4	10	0.134	0,1825	0.1963	0.1262	0.884	0.482	1.556	1-1/2	14	0.083	1.398	0.3927	0,3492	1.258	1.334	1.124
3/4	11	0.120	0.2043	0.1963	0.1335	0.809	0.510	1.471	1-1/2	16	0.065	1.474	0.3927	0.3587	0.996	1.370	1.095
3/9	12	0.109	0.2223	0.1963	0.1393	0.748	0.532	1.410	2 - 1 -	11	0.120	2 499	0.5236	0.4608	2,410	1.760	1.136
3/4	14	0.095	0.2200	0.1963	0.1400	0.606	0,000	1,339	2	10	0.009	0.570	0 6336	0.4730	1 094	1 810	1 105
3/4	15	0.022	0.2894	0.1963	0.1529	0.592	0.606	1.239	2	13	0.095	2.573	0.5230	0.0739	1.504	1,010	1.100
3/4	16	0.065	0.3019	0.1963	0.1623	0.476	0.620	1.210	2-1/2	9	0.148	3,815	0.6540	0,5770,	3,719	2.204	1.134
3/4	17	0.058	0.3157	0.1963	0.1660	0,428	0.634	1.183	0	0	a finte a michael	- 12 1	Alexandrat	unara Arcan	lation		
3/4	18	0.049	0.3339	0.1963	0.1707	0.367	0.652	1.150	Source:	Courtesy	or the Jubus	ar Exchange	er Manufact	urers Assoc	anon.		
3/4	20	0.835	0.3632	0.1963	0.1780	0.269	0.680	1.103									
7/8	10	0.134	0.2892	0.2291	0.1589	1.061	0.607	1.441									
7/8	11	0.120	0.3166	0.2291	0.1662	D.969	0.635	1.378									
7/8	12	0.109	0.3390	0.2291	0.1720	0.891	0.657	1.332									
7/8	13	0.095	0.3685	0.2291	0.1793	0.792	0.685	1.277									
7/8	14	0.065	0,3540	0.2291	0.1850	0.709	0.709	1.234									
7/8	18	0.000	0 4742	0.2291	0.1930	0.501	0.740	1 1 2 6									
7/8	20	0.035	0.5090	0.2291	0.2107	0.313	0.805	1.082									
1	8	0.165	0.3526	0.2618	0.1754	1.462	0.670	1.493									
1	10	0.134	0.4208	0.2618	0.1916	1.237	0.732	1.366									
1	11	0.120	0.4536	0.2618	0.1990	1,129	0.760	1.316									
1	12	0.109	0.4803	0.2618	0.2047	1.037	0.782	1.279									
1	13	0.095	0.5153	0.2618	0.2121	0.918	0.810	1.235									
1	14	0.083	0.5463	0.2618	0.2183	0.813	0.834	1.199									
381	15	0.072	0.5755	0.2618	0.2241	0.714	0.836	1,107									
	4.14	0,000	10 P TO	0.6010	0.44/0	0.0772	10.577 L1	4.112									

Fouling Resistances for Water

Temperature of Heating Medium Temperature of Water	Up to 2 50°	115°C C	R, (m ² · K/W) 115 to 205°C Over 50°C		
Water Velocity (m/s)	0.9 and Less	Over 0,9	0.9 and Less	Over 0.5	
Seawater	0.000088	0.000088	0.000176	0.000176	
Brackish water	0.000352	0.000176	0.000528	0.000352	
Cooling tower and artificial spray pond					
Treated make up	0.000176	0.000176	0.000352	0.000352	
Untreated	0.000528	0.000528	0.000881	0.000705	
City or well water	0.000176	0.000176	0.000352	0.000352	
River water					
Minimum	0.000352	0.000176	0.000528	0.000352	
Average	0.000528	0.000352	0.000705	0.000528	
Muddy or silty	0.000528	0.000352	0.000705	0.000528	
Hard (over 15 grains/gal)	0.000528	0.000528	0.000881	0.000881	
Engine jacket	0.000176	0.000176	0.000176	0.000176	
Distilled or closed cycle					
Condensate	0.000088	0.000088	0.000088	0.000088	
Treated boiler feedwater	0.000176	0.000088	0.000176	0.000176	
Boiler blowdown	0.000352	0.000352	0.000352	0.000352	

40 From Standards of the Tubular Exchanger Manufacturers Association (1988). ©1988 by Tubular Exchanger Manufacturers Association. With permission.

Industrial Fluids	R, (m2 • K/W)
Olls	
Fuel oil no. 2	0.000352
Fuel oil no. 6	D.000881
Transformer oll	0.000176
Engine lube oil	0.000176
Quench oll	0.000705
Gases and Vapors	
Manufactured gas	0.001761
Engine exhaust gas	0.001761
Steam (nonoil bearing)	0.000088
Exhaust steam (oll bearing)	0.000264-0.000352
Refrigerant vapors (oil bearing)	0.000352
Compressed air	0.000176
Ammonia vapor	0.000176
CO ₂ vapor	0.000176
Chlorine yapor	0.000352
Coal flue gas	0.001761
Natural gas flue gas	0.000881
Liquids	
Molten heat transfer salts	0.000088
Refrigerant liquids	0.000176
Hydraulic fluid	0.000176
Industrial organic heat transfer media	0.000352
Ammonia liquid	0.000176
Ammonia liquid (oil bearing)	0.000528
Calcium chloride solutions	0.000528
Sodium chloride solutions	0.000528
CO ₂ liquid	0.000176
Chlorine liquid	0.000352
Methanol solutions	0.000352
Ethanol solutions	0.000352
Ethylene glycol solutions	0.000352

From Standards of the Tubular Exchanger Manufacturers Association (1988). ©1988 by Tubular Exchanger Manufacturers Association. With permission.

Simplified Heat Exchanger Design Calculations.....1

- If Inlet temperatures, mass flow rates and one of the outlets temperatures are known
- 1. Calculate Q and the outlet temperature using energy conservation
- 2. Calculate ΔT_{Im} by obtaining F and $\Delta T_{Im,cf}$
- 3. Calculate the overall heat transfer coefficient U
- 4. Determine the surface area using the Q_ ΔT_{Im} relationship

Simplified Heat Exchanger Design Calculations.....2

- If Inlet and outlet temperatures and one mass flow rate are known
- 1. Calculate Q and the remaining mass flow rate using energy conservation
- 2. Calculate Q_{max} and ϵ
- Find out NTU from the NTU- ε relationships for different types of heat exchangers
- 4. Determine the surface area

Basic Algorithms for Design of Heat Exchangers...(1)

44

Basic logic structure for process heat exchanger design. (Based on Bell, K. J. [1981] Heat Exchangers: Thermal-Hydraulic Fundamentals and Design, Taylor and Francis, Washington, D.C.)

45

Heat exchanger design methodology. (Modified from Shah, 1982; Taborek, 1988; and Kays and London, 1998.)

Basic Iterative Numerical Methodology

Example: Double pipe and Shell-and-Tube Heat Exchangers

- 1) Problem identification.
- 2) Calculation of heat exchanger effectivness (ε).
- Selection of the heat exchanger type alternative (Counter flow or multi pass tube flow).
- 4) Calculation of Number of Transfer Units (*NTU*) based on $NTU \varepsilon$ relationships.
- 5) The length of the heat exchanger is assumed ($L_{assumed}$).
- 6) Convection heat transfer coefficients h_i and h_o are calculated based on ($L_{assumed}$).
- 7) The estimated overall heat transfer coefficient ($U_{of,est}$) is calculated.
- 8) The estimated heat transfer area ($A_{of,est} = C_{min} NTU/U_{of,est}$) is calculated.
- 9) The length of the heat exchanger surface $(L_{corrected} = \frac{A_{of,est}}{\pi d_o N_t})$ is corrected.

10)The procedure starting from step (5) to step (9) is repeated by letting

 $L_{assumed}$ = $L_{corrected}$ until the following convergence criterion is satisfied :

 $\left|\frac{L_{assumed} - L_{corrected}}{L_{assumed}}\right| * 100 < 0.1\%$

11) The size of heat exchanger is checked against the different realistic constraints.12) The optimum size among the acceptable sizes is selected based on minimum annual cost.

Cost of Heat Exchanger

Cost of Energy (CE):

$$CE = \left(\frac{\dot{P}_i + \dot{P}_o}{1000}\right) \times W_{hrs} \times W_{days} \times Unit \ Pr \ ice$$

W_{hrs}: Working hours per day; W_{days}: Working days per year; Unit Price: price of 1 kWhr

Cost of Manufacturing (CM):

CM = *Unit Price per meter* × *Length*

Total Annual Cost (TAC):

 $TAC = CE + CM \times \{A/P(i,n)\}$

i: interest rate;

48

n: worth years of the heat exchanger

$$A/P(i,n) = \frac{i(i+1)^{n}}{(i+1)^{n}-1}$$

Heat Exchanger Design Example..(a)

Objective:

Design a double pipe heat exchanger with bare inner multi-tubes that can be used to cool engine oil with cold sea water. The following are the design specification:

Fluid	Engine Oil	Sea Water			
Inlet Temperature, °C	65	20			
Outlet Temperature, °C	55	25			
Heat Load, kW	117.9				

Preliminary design options:

Three parallel x two series hairpin heat exchangers are used.

The engine oil is selected to flow inside the tubes.

49

Fig. 1: Preliminary design option for the hairpin sections

Heat Exchanger Design Example..(b)

'Iwo hairpin sections arranged in series.

Heat Exchanger Design Example..(c)

Design constraints:

Pressure drop constraints

(related to mechanical and operational cost constraints)

- The maximum pressure drop of oil must be smaller than 80 kPa.
- The maximum pressure drop of sea water side must be smaller than 10 kPa. **Spatial constraint**

(related to capital cost constraints)

The maximum dimension of the heat exchanger must be smaller than 2.0 m. **Cost constraint**

(related to capital and operational cost constraints)

The operating cost including manufacturing cost must be smaller than 15,000 SR/year. (**Take:** the price of 1kWhr of electrical energy is 0.2 SR, the pumps efficiency is 0.7, no. of working hours per day for the heat exchanger is 10 hrs/day, no. of working days per year for the heat exchanger is 350 days/year) Material constraint

(related to environmental constraints)

Tubes must be made of steel, k_{steel} =18 W/mK.

Heat Exchanger Design Example..(d)

Standards to be used:

- The tubes and pipe dimensions are according to "Steel Pipe Dimensions AISI Schedule 40".
- The fouling factors are to be taken according to "TEMA" standards.

Pipe Size	d _o	d _i
(in)	(mm)	(mm)
0.375	17.272	12.446
1/2	21.336	15.748
3/4	26.67	20.828
1	33.528	26.67
1 1/4	42.164	35.052
1 1/2	48.26	40.894
2	60.452	52.578
2 1/2	73.152	62.738
3	88.9	77.978
3 1/2	101.6	90.17
4	114.3	102.362
5	141.224	128.27
6	168.402	154.178
8	219.202	202.692

Steel Pipe Dimensions AISI Schedule 40

Heat Exchanger Design Example..(e)

Alternative Solutions:

In the market, the following pipe dimensions are available and their expected unit prices are listed:

Sol. no.	D (inch)	d (inch)	N _t	Unit price per meter* (SR/m)		
1	3 sch.40		9	1500		
2	4 sch.40	0.5 ash 40	14	2300		
3	6 sch.40	0.5 scn.40	23	3800		
4	8 sch.40		30	5000		
*Consider the no. of worth years for the heat exchanger is 4 years with						
zero inter	zero interest rate (i=0, n=4)					

Heat Exchanger Design Example..(f)

Quantity	Engine oil-i	Sea water-o	Unit
mass flow rate	2.066246	1.963037	kg/s
T ₁	65.000000	20.000000	$^{\circ}\mathrm{C}$
$\overline{T_2}$	55.000001	25.000000	$^{\circ}\mathrm{C}$
c _p	1902.000000	4004.000000	J/kg/K
μ	0.075000	0.000964	Pa.s
μ_{s}	0.197000	0.000703	Pa.s
k	0.144200	0.638900	W/m/K
Pr	1050.000000	6.290000	
ρ	885.270000	1013.400000	kg/m ³

Heat Exchanger Design Example..(g)

k _t	18.0	W/m/K
Q _{total}	117900.0	W
N _{HPparallel}	3	
N _{HPseries}	2	
Q per two hairpins	39300.0	W
$\Delta T_{lm.cf}$	37.444379	°C

					less
L _{estimated}			%Error	%	than
L_1	4.360417	m	0.023470	%	0.10
$\overline{L_2}$	2.886566	m	0.019095	%	0.10
L_3^{-}	1.986342	m	0.011529	%	0.10
L_4	1.809555	m	0.005738	%	0.10

Heat Exchanger Design Example..(h)

	D _i	do	di	$\mathbf{N}_{\mathbf{t}}$
	m	m	m	
Size no. (1)	0.077978	0.021336	0.015748	9
Size no. (2)	0.102362	0.021336	0.015748	14
Size no. (3)	0.154178	0.021336	0.015748	23
Size no. (4)	0.202692	0.021336	0.015748	30

u _{mi} m/s	Re _i	fai	Nu _{iavg}	h _i W/m²/K
1.331445	247.493057	0.064648	15.907898	145.664142
0.855929	159.102680	0.100564	15.753116	144.246845
0.521000	96.845109	0.165212	15.121994	138.467835
0.399433	74.247917	0.215494	14.277055	130.730968

Heat Exchanger Design Example..(i)

$\mathbf{A_{co}}$	$\mathbf{P}_{\mathbf{wo}}$	$\mathbf{P_{ho}}$	D _{ho}	D _{eo}
\mathbf{m}^2	m	m	m	m
0.001558	0.848236	0.603261	0.007346	0.010330
0.003224	1.259986	0.938406	0.010235	0.013742
0.010446	2.026032	1.541667	0.020624	0.027104
0.021541	2.647646	2.010871	0.032544	0.042850

u _{mo} m/s	Re _o	fa _o	Nu _o	h _o W/m²/K
1.243414	9602.726967	0.007960	73.531205	4547.975888
0.600845	6464.660397	0.008928	50.428540	2344.526224
0.185432	4020.361861	0.010343	30.715387	724.028688
0.089924	3076.461352	0.011294	22.365887	333.480320

Heat Exchanger Design Example..(j) <u>Sizing Sheets:</u>

1/U _{oc}	U _{oc}	R _{fi}	R _{fo}	R _{ft}
m ² K/W	W/m²/K	m^2K/W	m^2K/W	m^2K/W
0.009701	103.082434	0.000176	0.000088	0.000326
0.009999	100.009907	0.000176	0.000088	0.000326
0.011346	88.139550	0.000176	0.000088	0.000326
0.013542	73.843116	0.000176	0.000088	0.000326
$1/U_{of}$	$\mathbf{U}_{\mathbf{of}}$	$\mathbf{A_{of}}$	L	
m^2K/W	$W/m^2/K$	m^2	m	CF
0.010027	99.726495	10.524352	4.361441	0.967444
0.010325	96.847976	10.837157	2.887118	0.968384
0.011672	85.674415	12.250527	1.986571	0.972031
0.013869	72 104020	14 555062	1 200650	0 076461

Heat Exchanger Design Example..(k) <u>Sizing Sheets:</u>

$\Delta \mathbf{p_i}$ Pa	∆p _i kPa	$\Delta \mathbf{p_o}$ Pa	∆p _o kPa	P _i W
230280.968092	230.280968	64718.856051	64.718856	767.832235
97928.227412	97.928227	8651.988187	8.651988	326.524812
40905.782168	40.905782	399.691991	0.399692	136.393287
28475.241873	28.475242	69.851256	0.069851	94.945791
		Elec. Energ	gy	
n	D	consumnti	on Fr	iergy Cost
P ₀	r _t	consumption		icigy cost
P _o W	W W	kWhr/yea	n El	SR/year
P _o W 179.093725	P _t W 946.925960	kWhr/yea 3314.2408	ar 60 19	SR/year 88.544516
P _o W 179.093725 23.942277	P _t W 946.925960 350.467089	kWhr/yea 3314.2408 1226.6348	60 19	SR/year 88.544516 35.980887
P _o W 179.093725 23.942277 1.106051	P _t W 946.925960 350.467089 137.499337	kWhr/yea 3314.24080 1226.6348 481.24768	ar 60 19 11 73 31 28	SR/year 88.544516 35.980887 88.748609

Heat Exchanger Design Example..(I)

Unit I SI	Price/m R/m	Annual worth o SR/yea	of the unit* ar	Total Annual Cost (TAC)** SR/year
1	500	9813.241	.923	11801.786439
2: 3: 5:	300 800 000	9960.555 11323.454 13572.44	5532 4124 3579	10696.536419 11612.202733 13772.235662
	Decision	Reasons		
Size no. (1)	Rejected	dPi>limit, dPo>limit, L>limit		
Size no. (2)	Rejected	dPi>limit, L>limit		
Size no. (3)	Accept		Optimum-si on minimu	ze (design) based m cost criterion
Size no. (4)	Accept			

References

- F. P. Incorpera, D. P. DeWitt, T. L. Bergman, A. S. Lavine, "Fundamentals of Heat and Mass Transfer-7th Edition", John Wiley, New, 2011, New York.
- R. K. Shah, D. P. Sekulic, Fundamental of Heat Exchanger Design, John Wiley, 2003, New York.
- S. Kakaς, H. Liu, Heat Exchangers: Selection, Rating, and Thermal Design, CRC Press, 2002, Florida.
- <u>http://www.abet.org/uploadedFiles/Accreditation/Accreditation_Step_by_Step/Accreditati</u> on_Documents/Current/2014_-_2015/E001%2014-15%20EAC%20Criteria%203-13-<u>14%282%29.pdf</u>
- http://www.engineeringtoolbox.com/pump-delivery-flow-velocity-waterd_232.html
- http://www.engineeringtoolbox.com/flow-velocity-water-pipes-d_385.html
- <u>http://uhaweb.hartford.edu/BEAUDRY/designguides/NCEDesignGuide_HVA</u> <u>C.pdf</u>
- United States Department of Labor 61