Champter 6

(Electrochemistry)

Self Assessment A (Chemistry by Rymond Chang)

NOTE: A table of standard reduction potentials is required to work many of these problems.

Complete and balance the following redox equation. When properly balanced using 1. the smallest whole-number coefficients, the coefficient of S is

$$H_2S + HNO_3 \rightarrow S + NO$$
 (acidic solution)

- A. 1
- B. 2
- C. 3
- D. 5
- E. 6

Given the following notation for an electrochemical cell 2.

$$Pt(s) | H_2(g) | H^+(aq) | | Ag^+(aq) | Ag(s),$$

what is the balanced overall (net) cell reaction?

- A. $2H^{+}(aq) + 2Ag^{+}(aq) \rightarrow H_{2}(g) + 2Ag(s)$
- B. $H_2(g) + 2Ag(s) \rightarrow H^+(aq) + 2Ag^+(aq)$
- C. $2H^{+}(aq) + 2Ag(s) \rightarrow H_{2}(g) + 2Ag^{+}(aq)$
- D. $H_2(g) + Ag^+(aq) \rightarrow H^+(aq) + Ag(s)$
- E. $H_2(g) + 2Ag^+(aq) \rightarrow 2H^+(aq) + 2Ag(s)$

Calculate the value of E°cell for the following reaction: 3.

$$2Au(s) + 3Ca^{2+}(aq) \rightarrow 2Au^{3+}(aq) + 3Ca(s)$$

- A. -4.37 V B. -1.37 V C. -11.6 V
- D. 1.37 V
- E. 4.37 V

Calculate the standard cell emf for the following cell: 4.

$$Mg \mid Mg^{2+} \parallel NO_3^-$$
 (acid soln) $\mid NO(g) \mid Pt$

- A. 3.33 V
- B. 1.41 V C. -1.41 V D. 8.46 V E. -8.46 V

The overall reaction $2\text{Co}^{3+}(aq) + 2\text{Cl}^{-}(aq) \rightarrow 2\text{Co}^{2+}(aq) + \text{Cl}_{2}(g)$ has the standard cell 5. voltage E°cell= 0.46 V.

Given that $Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$, $E^\circ = 1.36 \text{ V}$,

calculate the standard reduction potential for the following the half reaction at 25°C:

$$\text{Co}^{3+} + \text{e}^- \rightarrow \text{Co}^{2+}$$

- A. 1.82 V
- B. $-0.90 \, V$
- C. 0.90 V
- D. -1.82 V E. -1.36 V

6. In the following half equation, which is the oxidizing agent?

$$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$$

- A. NO₃⁻
- B. H⁺
- C. e⁻
- D. NO
- E. H₂O

Which statement is true for a spontaneous redox reaction carried out at standard-state 7. conditions?

- A. Eored is always negative.
- B. E°cell is always positive.
- C. Eoox is always positive.
- D. Eored is always positive.

Consider the following standard reduction potentials in acid solution: 8.

E°(V)

$$Al^{3+} + 3e^{-} \rightarrow Al(s)$$
 -1.66
 $AgBr(s) + e^{-} \rightarrow Ag(s) + Br^{-}$ +0.07
 $Sn^{4+} + 2e^{-} \rightarrow Sn^{2+}$ +0.14
 $Fe^{3+} + e^{-} \rightarrow Fe^{2+}$ +0.77

The strongest oxidizing agent among those shown above is

- A. Fe³⁺.
- B. Fe^{2+} . C. Br^{-} . D. Al^{3+} .
- E. Al.

Determine the equilibrium constant, Keq, at 25°C for the reaction 9. $2Br^{-}(aq) + I_2(s) \iff Br_2(l) + 2\Gamma(aq)$

- A. 5.7×10^{-19}
- B. 18.30

C.
$$1.7 \times 10^{54}$$

D. 1.9×10^{18}
E. 5.7×10^{-55}

10. Given the following standard reduction potentials,

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$

$$E_o = 0.80 \text{ V}$$

$$AgCN(s) + e^- \rightarrow Ag(s) + CN^-(aq)$$
 $E^{\circ} = -0.01 \text{ V}$

calculate the solubility product of AgCN at 25°C.

A.
$$4.3 \times 10^{-14}$$

B.
$$2.3 \times 10^{13}$$

C.
$$2.1 \times 10^{-14}$$

D.
$$5.1 \times 10^{13}$$

A. 4.3×10^{-14} B. 2.3×10^{13} C. 2.1×10^{-14} D. 5.1×10^{13} E. None of these

Calculate the cell emf for the following reaction at 25°C: 11.

$$2Ag^{+}(0.010 \text{ M}) + H_{2}(1 \text{ atm}) \rightarrow 2Ag(s) + 2H^{+}(pH = 10.0)$$

E. 0.80 V

How many coulombs of charge are required to cause reduction of 0.20 mole of Cr3+ to 12. Cr?

C.
$$2.9 \times 10^4$$
 C

D.
$$5.8 \times 10^4$$
 C

A. 0.60 C B. 3.0 C C. $2.9 \times 10^4 \text{ C}$ D. $5.8 \times 10^4 \text{ C}$ E. $9.65 \times 10^4 \text{ C}$

A current of 0.80 A was applied to an electrolytic cell containing molten CdCl2 for 2.5 13. hours. Calculate the mass of cadmium metal deposited.

A.
$$3.2 \times 10^{-7}$$
 g

B.
$$1.2 \times 10^{-3}$$
 g C. 4.2 g D. 8.4 g E. 16.8 g

14. A current of 2.50 A was passed through an electrolytic cell containing molten CaCl₂ for 4.50 hours. How many moles of calcium metal should be deposited?

A.
$$5.83 \times 10^{-5}$$
 mol

E.
$$1.95 \times 10^{9} \text{ mol}$$