Champter 4

(Chemical Kinetics)

Self Assessment A (Chemistry by Rymond Chang)

The units of "reaction rate" are 1.

A.
$$L \text{ mol}^{-1} \text{ s}^{-1}$$

B.
$$L^2 \text{mol}^{-2} \text{s}^{-1}$$

C. s^{-1}

$$C. s^{-1}$$

D.
$$s^{-2}$$

E.
$$mol L^{-1} s^{-1}$$

For the following reaction, $\Delta P(C_6H_{14})/\Delta t$ was found to be -6.2×10^{-3} atm/s. 2. $C_6H_{14}(g) \rightarrow C_6H_6(g) + 4H_2(g)$

Determine $\Delta P(H_2)/\Delta t$ for this reaction at the same time.

A.
$$6.2 \times 10^{-3}$$
 atm/s B. 1.6×10^{-3} atm/s

B.
$$1.6 \times 10^{-3}$$
 atm/s

C.
$$2.5 \times 10^{-2}$$
 atm/s

D.
$$-1.6 \times 10^{-3}$$
 atm/s

E.
$$-2.5 \times 10^{-2}$$
 atm/s

For the hypothetical reaction $A + 3B \rightarrow 2C$, the rate of appearance of C given by 3. (Δ[C]/Δt) may also be expressed as

A.
$$\Delta [C]/\Delta t = \Delta [A]/\Delta t$$

B.
$$\Delta |C|/\Delta t = -(3/2) \Delta |B|/\Delta t$$

C.
$$\Delta$$
[C]/ Δ t = -(2/3) Δ [B]/ Δ t

D.
$$\Delta[C]/\Delta t = -(1/2) \Delta[A]/\Delta t$$

For the overall chemical reaction shown below, which one of the following statements 4. can be rightly assumed?

$$2H_2S(g) + O_2(g) \rightarrow 2S(s) + 2H_2O(l)$$

- A. The reaction is third-order overall.
- B. The reaction is second-order overall.
- C. The rate law is, rate = $k[H_2S]^2[O_2]$.

- D. The rate law is, rate = $k[H_2S][O_2]$.
 - E. The rate law cannot be determined from the information given.
- 5. The reaction $A + 2B \rightarrow \text{products has the rate law, rate} = k[A][B]^3$. If the concentration of B is doubled while that of A is unchanged, by what factor will the rate of reaction increase?
 - A. 2
- B. 4
- C. 6
- D. 8
- E. 9
- 6. Appropriate units for a first-order rate constant are
 - A. M/s
- B. 1/**M**·s
- C. 1/s
- D. $1/M^2$ s

Answer: C Difficulty: E

- 7. It takes 42.0 min for the concentration of a reactant in a first-order reaction to drop from 0.45 M to 0.32 M at 25°C. How long will it take for the reaction to be 90% complete?
 - A. 13.0 min
- B. 86.0 min
- C. 137 min
- D. 222 min
- E. 284 min

Answer: E Difficulty: M

8. Nitric oxide gas (NO) reacts with chlorine gas according to the equation $NO + \frac{1}{2}Cl_2 \rightarrow NOCl$.

The following initial rates of reaction have been measured for the given reagent concentrations.

Expt. #	Rate (M/hr)	NO(M)	$Cl_2(M)$
1	1.19	0.50	0.50
2	4.79	1.00	0.50
3	9. 5 9	1.00	1.00

Which of the following is the rate law (rate equation) for this reaction?

- A. rate = k[NO]
- B. rate = $k[NO][Cl_2]^{1/2}$
- C. rate = $k[NO][Cl_2]$
- D. rate = $k[NO]^2[Cl_2]$
- E. rate = $k[NO]^2[Cl_2]^2$

9. The following initial rate data apply to the reaction

$$F_2(g) + 2\text{Cl}_2\text{O}(g) \rightarrow 2\text{FClO}_2(g) + \text{Cl}_2(g).$$

Expt. #	$[F_2]$ (M)	$[Cl_2O](M)$	Initial rate (M/s)
1	0.05	0.010	5.0×10^{-4}
2	0.05	0.040	2.0×10^{-3}
3	0.10	0.010	1.0×10^{-3}

Which of the following is the rate law (rate equation) for this reaction?

- A. rate = $k[F_2]^2[Cl_2O]^4$
- B. rate = $k[F_2]^2[Cl_2O]$
- C. rate = $k[F_2][Cl_2O]$ D. rate = $k[F_2][Cl_2O]^2$
- E. rate = $k[F_2]^2[Cl_2O]^2$

For the reaction $X + Y \rightarrow Z$, the reaction rate is found to depend only upon the 10. concentration of X. A plot of 1/X verses time gives a straight line.

What is the rate law for this reaction?

A. rate =
$$k[X]$$
 B. rate = $k[X]^2$ C. rate = $k[X][Y]$ D. rate = $k[X]^2[Y]$

- 11. Which of the following statements is *false*?
 - A. A catalyst increases the rate of the forward reaction, but does not alter the reverse rate.
 - B. A catalyst alters the mechanism of reaction.
 - C. A catalyst alters the activation energy.
 - D. A catalyst may be altered in the reaction, but is always regenerated.
 - E. A catalyst increases the rate of reaction, but is not consumed.
- 12. Complete the following statement: A catalyst

- A. increases the activation energy.
 - B. alters the reaction mechanism.
 - C. increases the average kinetic energy of the reactants.
 - D. increases the concentration of reactants.
 - E. increases the collision frequency of reactant molecules.
- 13. With respect to the figure below, which choice correctly identifies all the numbered positions?

	1.	2.	3.	4 .
A.	catalyst	intermediate	activated complex	product
В. :	reactants	activated complex	intermediate	product
C. :	reactants	activated complex	catalyst	product
D.	reactants	intermediate	activated complex	product
E. 1	reactants	intermediate	activated complex	catalyst

- 14. The activation energy of a certain uncatalyzed reaction is 64 kJ/mol. In the presence of a catalyst, the E_a is 55 kJ/mol. How many times faster is the catalyzed than the uncatalyzed reaction at 400°C? Assume that the frequency factor remains the same.
 - A. 5.0 times
- B. 1.16 times
- C. 15 times
- D. 2.0 times
- E. 0.2 times