Champter 2

(Thermodynamics)

Self Assessment A (Chemistry by Rymond Chang)

1. Which of the following species has the highest entropy (S°) at 25°C?

A. CH₃OH(l)

B. CO(g)

C. MgCO₃(s)

 $D. H_2O(1)$

E. Ni(s)

2. Arrange the following compounds in order of increasing standard molar entropy at 25°C:

 $C_3H_8(g)$, $C_2H_4(g)$, ZnS(s), and $H_2O(l)$.

- A. $ZnS(s) \le H_2O(l) \le C_3H_8(g) \le C_2H_4(g)$
- B. $C_2H_4(g) < H_2O(l) < C_3H_8(g) < NaCl(s)$
- C. $ZnS(s) < C_3H_8(g) < C_2H_4(g) < H_2O(l)$
- D. $C_3H_8(g) < C_2H_4(g) < H_2O(l) < ZnS(s)$
- E. $ZnS(s) < H_2O(l) < C_2H_4(g) < C_3H_8(g)$
- 3. Determine ΔS° for the reaction $SO_3(g) + H_2O(l) \rightarrow H_2SO_4(l)$.

	S°(J/K·mol)
SO_3	256.2
H_2O	69.9
H_2SO_4	156.9

- A. 169.2 J/K·mol
- B. 1343.2 J/K·mol
- C. −169.2 J/K·mol

D. −29.4 J/K·mol

E. 29.4 J/K·mol

- 4. A negative sign for ΔG indicates that, at constant T and P,
 - A. the reaction is exothermic.
 - B. the reaction is endothermic.
 - C. the reaction is fast.
 - D. the reaction is spontaneous.
 - E. $\triangle S$ must be > 0.

Ozone (O₃) in the atmosphere can reaction with nitric oxide (NO): 5.

$$O_3(g) + NO(g) \rightarrow NO_2(g) + O_2(g)$$
.

Calculate the ΔG° for this reaction at 25°C. ($\Delta H^{\circ} = -199 \text{ kJ/mol}$, $\Delta S^{\circ} = -4.1 \text{ J/K·mol}$)

A. 1020 kJ/mol

$$B. -1.22 \times 10^3 \text{ kJ/mol} \qquad \qquad C. \ 2.00 \times 10^3 \text{ kJ/mol}$$

C.
$$2.00 \times 10^3$$
 kJ/mol

D. $-1.42 \times 10^3 \, \text{kJ/mol}$

$$E. -198 kJ/mol$$

Sodium carbonate can be made by heating sodium bicarbonate: 6.

$$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$$

Given that $\Delta H^{\circ} = 128.9 \text{ kJ/mol}$ and $\Delta G^{\circ} = 33.1 \text{ kJ/mol}$ at 25°C, above what minimum temperature will the reaction become spontaneous under standard state conditions?

A. 0.4 K B. 3.9 K C. 321 K D. 401 K

E. 525 K

For the reaction $H_2(g) + S(s) \rightarrow H_2S(g)$, $\Delta H^{\circ} = -20.2$ kJ/mol and $\Delta S^{\circ} = +43.1$ 7. J/K·mol. Which of the following statements is true?

A. The reaction is only spontaneous at low temperatures.

- The reaction is spontaneous at all temperatures. В.
- ∆G° becomes less favorable as temperature increases. C.
- The reaction is spontaneous only at high temperatures. D.

The reaction is at equilibrium at 25°C under standard conditions. Ε.

Determine the equilibrium constant Kp at 25°C for the reaction 8.

$$N_2(g) + 3H_2(g) \iff 2NH_3(g)$$

 $(\Delta G^{\circ}_f(NH_3(g)) = -16.6 \text{ kJ/mol})$

 1.52×10^{-6} A.

B. 6.60×10^5 C. 8.28×10^{-2}

D. 2.60

E. 13.4

For the reaction 2C(graphite) + $H_2(g) \rightarrow C_2H_2(g)$, $\Delta G^{\circ} = +209.2$ kJ/mol at 25°C. If 9. $P(H_2) = 100$. atm, and $P(C_2H_2) = 0.10$ atm, calculate ΔG for this reaction.

A. +207.8 kJ/mol

B. +226.3 kJ/mol

C. +192.1 kJ/mol

D. +17.3 kJ/mol

E. -16.9 kJ/mol.

- 10. The reaction rates of many spontaneous reactions are actually very slow. Which of the following is the best explanation for this observation?
 - A. K_p for the reaction is less than one.
 - B. The activation energy of the reaction is large.
 - C. ΔG° for the reaction is positive.
 - D. Such reactions are endothermic.
 - E. The entropy change is negative.