## **Champter 1**

## (Thermochemistry)

## Self Assessment A (Chemistry by Rymond Chang)

1- An exothermic reaction causes the surroundings to:

(A) become basic.

(B) decrease in temperature.

(C) increase in temperature.

(D) decrease in pressure.

(E) condense.

**2-** How much heat is evolved when 320 g of  $SO_2$  is burned according to the chemical equation shown below?

$$2 SO_2(g) + O_2(g) ----> 2 SO_3(g) \Delta H^{\circ}_{rxn} = -198 kJ$$

(A)  $5.04 \times 10^{-2} \text{ kJ}$ 

(B)  $9.9 \times 10^2 \text{ kJ}$ 

(C) 207 kJ

(D)  $5.0 \times 10^2 \text{ kJ}$ 

(E) None of the above.

**3-** The specific heat of aluminum is 0.214 cal/g·°C. Determine the energy, in calories, necessary to raise the temperature of a 55.5 g piece of aluminum from 23.0 to 48.6 °C.

(A) 109 cal

(B) 273 cal

(C) 577 cal

(D) 347 cal

(E) 304 cal

**4-** A 60.0 g sample of an alloy was heated to 96.00 °C and then dropped into a beaker containing 87.0 g of water at a temperature of 24.10 °C. The temperature of the water rose to a final temperature of 27.63 °C. The specific heat of water is 4.184 J/g·°C. What is the specific heat of the alloy?

(A) 0.313 J/g·°C

(B) 2.16 J/g⋅°C

(C) 0.118 J/g⋅°C

(D) 1.72 J/g·°C

(E) None of the above.

**5-** When 1.535 g of methanol (CH<sub>3</sub>OH) was burned in a constant-volume bomb calorimeter, the water temperature rose from 20.27  $^{\circ}$ C to 26.87  $^{\circ}$ C. If the mass of water surrounding the calorimeter was exactly 1000 g and the heat capacity of the bomb calorimeter was 1.75 kJ/ $^{\circ}$ C, calculate the molar heat of combustion of CH<sub>3</sub>OH. The specific heat of water is 4.184 J/g· $^{\circ}$ C.

(D)817 kJ/mol (E) None of the above.

**6-** To which one of the following reactions, occurring at 25 °C, does the symbol  $\Delta H^{\circ}_{f}$  [H<sub>2</sub>SO<sub>4</sub>(I)] refer?

(A) 
$$H_2(g) + S(s) + 2 O_2(g) ----> H_2SO_4(I)$$

(B) 
$$H_2SO_4(I)$$
 ---->  $H_2(g) + S(s) + 2 O_2(g)$ 

(C) 
$$H_2(g) + S(g) + 2 O_2(g) ----> H_2SO_4(I)$$

(D) 
$$H_2SO_4(I)$$
 ----> 2  $H(g)$  +  $S(s)$  + 4  $O(g)$ 

(E) 
$$2 H(g) + S(g) + 4 O(g) ----> H2SO4(I)$$

7- Given:  $SO_2(g) + \frac{1}{2}O_2(g)$  ---->  $SO_3(g) \Delta H^o_{rxn} = -99$  kJ, what is the enthalpy change for the following reaction?

$$2 SO_3(g) ----> O_2(g) + 2 SO_2(g)$$

**8-** Find the standard enthalpy of formation of ethylene,  $C_2H_4(g)$ , given the following data:

$$C_2H_4(g) + 3 O_2(g) ----> 2 CO_2(g) + 2 H_2O(I) \Delta H_f^0 = -1411 kJ;$$

$$C(s) + O_2(g) ----> CO_2(g) \Delta H_f^0 = -393.5 \text{ kJ};$$

$$H_2(g) + \frac{1}{2}O_2(g) ----> H_2O(I) \Delta H_f^c = -285.8 \text{ kJ}$$

**9-** Calculate  $\Delta H^{\circ}_{rxn}$  for the combustion reaction of  $CH_{4}$  shown below given the following:

```
\Delta H^{\circ}_{f} CH_{4}(g) = -74.8 \text{ kJ/mol};

\Delta H^{\circ}_{f} CO_{2}(g) = -393.5 \text{ kJ/mol};

\Delta H^{\circ}_{f} H_{2}O(l) = -285.5 \text{ kJ/mol}.

CH_{4}(g) + 2 O_{2}(g) ----> CO_{2}(g) + 2 H_{2}O(l)

(A) -604.2 kJ (B) 889.7 kJ (C) -997.7 kJ

(D) -889.7 kJ (E) None of the above
```

- **10-** A 1.300 g sample of benzoic acid ( $C_7H_6O_2$ ) was burned in a bomb calorimeter. The heat capacity of the entire apparatus, including the bomb, pail, thermometer, and water, was found to be 11,145 J/K. As a result of the reaction, the temperature of the calorimeter and water increased 4.627 K. What is the molar heat of combustion of benzoic acid?
- (A) 4.84 x 10<sup>6</sup> kJ/mol (B) -2.96 kJ/mol (C) -4844 kJ/mol
- (D) 549.1 kJ/mol (E) 51.57 kJ/mol