
Schedule: Timing Topic
20 minutes Lecture
20 minutes Practice
40 minutes Total

77
Multiple-Column Subqueries

Lesson Aim
In this lesson, you will learn how to write multiple-column subqueries and subqueries in the FROM clause of
a SELECT statement.

7-2

Objectives

After completing this lesson, you should After completing this lesson, you should
be able to do the following:be able to do the following:
• Write a multiple-column subquery
• Describe and explain the behavior of

subqueries when null values are
retrieved
• Write a subquery in a FROM clause

7-3

Multiple-Column Subqueries
Main query

MANAGER 10

Subquery
SALESMAN 30
MANAGER 10
CLERK 20

Main queryMain query
comparescompares

MANAGER 10MANAGER 10

Values from a multipleValues from a multiple--row androw and
multiplemultiple--column column subquerysubquery

SALESMAN SALESMAN 3030
MANAGER MANAGER 1010
CLERK CLERK 2020

toto

Multiple-Column Subqueries
So far you have written single-row subqueries and multiple-row subqueries where only one column was
compared in the WHERE clause or HAVING clause of the SELECT statement. If you want to compare two
or more columns, you must write a compound WHERE clause using logical operators. Multiple-column
subqueries enable you to combine duplicate WHERE conditions into a single WHERE clause.

Syntax

SELECT column, column, ...
FROM table
WHERE (column, column, ...) IN

(SELECT column, column, ...
FROM table
WHERE condition);

7-4

Using Multiple-Column
Subqueries

Display the order id, product id, and quantity of Display the order id, product id, and quantity of
items in the item table that match items in the item table that match bothboth the the
product id and quantity of an item in order 605.product id and quantity of an item in order 605.

SQL> SELECT ordid, prodid, qty
2 FROM item
3 WHERE (prodid, qty) IN
4 (SELECT prodid, qty
5 FROM item
6 WHERE ordid = 605)
7 AND ordid <> 605;

Using Multiple-Column Subqueries
The example on the slide is that of a multiple-column subquery because the subquery returns more than one
column. It compares the values in the PRODID column and the QTY column of each candidate row in the
ITEM table to the values in the PRODID column and QTY column for items in order 605.
First, execute the subquery to see the PRODID and QTY values for each item in order 605.

SQL> SELECT prodid, qty
2 FROM item
3 WHERE ordid = 605;

PRODID QTY
---------- ---------

100861 100
100870 500
100890 5
101860 50
101863 100
102130 10

6 rows selected.

7-5

Using Multiple-Column
Subqueries

Display the order number, product number, and Display the order number, product number, and
quantity of any item in which the product quantity of any item in which the product
number and quantity match number and quantity match bothboth the product the product
number and quantity of an item in order 605.number and quantity of an item in order 605.
SQL> SELECT ordid, prodid, qty
2 FROM item
3 WHERE (prodid, qty) IN
4 (SELECT prodid, qty
5 FROM item
6 WHERE ordid = 605)
7 AND ordid <> 605;

Using Multiple-Column Subqueries (continued)
When the SQL statement on the slide is executed, the Oracle server compares the values in both the PRODID
and QTY columns and returns those orders where the product number and quantity for that product match
both the product number and quantity for an item in order 605.
The output of the SQL statement is:

ORDID PRODID QTY

--------- --------- ---------

617 100861 100

617 100870 500

616 102130 10

The output shows that there are three items in other orders that contain the same product number and quantity
as an item in order 605. For example, order 617 has ordered a quantity 500 of product 100870. Order 605 has
also ordered a quantity 500 of product 100870. Therefore, these candidate rows are part of the output.

7-6

Column Comparisons

Pairwise

PRODID QTY
101863 100
100861 100
102130 10
100890 5
100870 500
101860 50

Nonpairwise

PRODID QTY
101863 100
100861 100
102130 10
100890 5
100870 500
101860 50

Pairwise Versus Nonpairwise Comparisons
Column comparisons in a multiple-column subquery can be pairwise comparisons or nonpairwise
comparisons.
The slide shows the product numbers and quantities of the items in order 605.
In the example on the previous slide, a pairwise comparison was executed in the WHERE clause. Each
candidate row in the SELECT statement must have both the same product number and same quantity as an
item in order 605. This is illustrated on the left side of the slide above. The arrows indicate that both the
product number and quantity in a candidate row match a product number and quantity of an item in order
605.
A multiple-column subquery can also be a nonpairwise comparison. If you want a nonpairwise comparison (a
cross product), you must use a WHERE clause with multiple conditions. A candidate row must match the
multiple conditions in the WHERE clause but the values are compared individually. A candidate row must
match some product number in order 605 as well as some quantity in order 605, but these values do not need
to be in the same row. This is illustrated on the right side of the slide. For example, product 102130 appears
in other orders, one order matching the quantity in order 605 (10), and another order having a quantity of
500. The arrows show a sampling of the various quantities ordered for a particular product.

7-7

Nonpairwise Comparison
Subquery

SQL> SELECT ordid, prodid, qty
2 FROM item
3 WHERE prodid IN (SELECT prodid
4 FROM item
5 WHERE ordid = 605)
6 AND qty IN (SELECT qty
7 FROM item
8 WHERE ordid = 605)
9 AND ordid <> 605;

Display the order number, product number, and Display the order number, product number, and
quantity of any item in which the product number quantity of any item in which the product number
and quantity match any product number and any and quantity match any product number and any
quantity of an item in order 605.quantity of an item in order 605.

Nonpairwise Comparison Subquery
The slide example does a nonpairwise comparison of the columns. It displays the order number, product number,
and quantity of any item in which the product number and quantity match any product number and quantity of an
item in order 605. Order 605 is not included in the output.

7-8

Nonpairwise Subquery
ORDID PRODID QTY

--------- --------- ---------
609 100870 5
616 100861 10
616 102130 10
621 100861 10
618 100870 10
618 100861 50
616 100870 50
617 100861 100
619 102130 100
615 100870 100
617 101860 100
621 100870 100
617 102130 100
. . .

16 rows selected.

Nonpairwise Subquery
The results of the nonpairwise subquery are shown in the slide. Sixteen candidate rows in the ITEM table
match the multiple conditions in the WHERE clause.
For example, an item from order 621 is returned from the SQL statement. A product in order 621 (product
number 100861) matches a product in an item in order 605. The quantity for product 100861 in order 621
(10) matches the quantity in another item in order 605 (the quantity for product 102130).

7-9

Null Values in a Subquery

SQL> SELECT employee.ename
2 FROM emp employee
3 WHERE employee.empno NOT IN
4 (SELECT manager.mgr
5 FROM emp manager);

no rows selected.no rows selected.

Returning Nulls in the Resulting Set of a Subquery
The SQL statement on the slide attempts to display all the employees who do not have any subordinates.
Logically, this SQL statement should have returned eight rows. However, the SQL statement does not return
any rows. One of the values returned by the inner query is a null value and hence the entire query returns no
rows. The reason is that all conditions that compare a null value result in a null. So whenever null values are
likely to be part of the resultant set of a subquery, do not use the NOT IN operator. The NOT IN operator is
equivalent to !=ALL.
Notice that the null value as part of the resultant set of a subquery will not be a problem if you are using the IN
operator. The IN operator is equivalent to =ANY. For example, to display the employees who have
subordinates, use the following SQL statement:

SQL> SELECT employee.ename
2 FROM emp employee
3 WHERE employee.empno IN (SELECT manager.mgr
4 FROM emp manager);

ENAME

KING
...
6 rows selected.

Using a Subquery in the FROM Clause
You can use a subquery in the FROM clause of a SELECT statement, which is very similar to how views are
used. A subquery in the FROM clause of a SELECT statement defines a data source for that particular SELECT
statement, and only that SELECT statement. The slide example displays employee names, salaries, department
numbers, and average salaries for all the employees who make more than the average salary in their department.

7-10

SQL> SELECT a.ename, a.sal, a.deptno, b.salavg
2 FROM emp a, (SELECT deptno, avg(sal) salavg
3 FROM emp
4 GROUP BY deptno) b
5 WHERE a.deptno = b.deptno
6 AND a.sal > b.salavg;

Using a Subquery
in the FROM Clause

ENAME SAL DEPTNO SALAVG
---------- --------- --------- ----------
KING 5000 10 2916.6667
JONES 2975 20 2175
SCOTT 3000 20 2175
...
6 rows selected.

7-11

Summary

• A multiple-column subquery returns
more than one column.
• Column comparisons in multiple-

column comparisons can be pairwise or
nonpairwise.
• A multiple-column subquery can also be

used in the FROM clause of a SELECT
statement.

Summary
Multiple-column subqueries enable you to combine duplicate WHERE conditions into a single WHERE
clause. Column comparisons in a multiple-column subquery can be pairwise comparisons or nonpairwise
comparisons. You can use a subquery to define a table to be operated on by a containing query. You do this
by placing the subquery in the FROM clause of the containing query as you would a table name.

7-12

Practice Overview

Creating multiple-column subqueries

Practice Overview
In this practice, you will write multiple-value subqueries.

