SOOCHOW JOURNAL OF MATHEMATICS Volume 33, No. 3, pp. 435-444, July 2007

ON LEFT DERIVATIONS OF BCI-ALGEBRAS

BY

HAMZA A. S. ABUJABAL AND NORA O. AL-SHEHRI

Abstract. In the present paper, we introduce the notion of left derivation of a BCI-algebra and investigate some related properties. A condition for left derivation to be regular is given. Finally, we give a characterization of a p-semisimple BCI-algebra which admits left derivation.

1. Introduction

In [3], Y. B. Jun and X. L. Xin applied the notion of derivation in ring and near-ring theory to BCI-algebras, and they also introduced a new concept called a regular derivation in BCI-algebras. They investigated some of its properties, defined a *d*-invariant ideal and gave conditions for an ideal to be *d*-invariant. In non-commutative rings, the notion of derivations is extended to α -derivations, left derivations and central derivations. The properties of α -derivations and central derivations were discussed in several papers with respect to the ring structures. For left derivations, M. Brešar and J. Vukman [2] used them to give some results in prime and semi-prime rings. For skew polynomial rings, all left derivations are obtained in a similar way to a polynomial rings (see A. Nakajima and M. Sapanci [8]). In [10], J. Zhan and Y. L. Liu introduced the notion of *f*-derivations of *BCI*algebras. The objective of this paper is to define left derivation on *BCI*-algebras and then investigate a regular left derivations. Finally, we study left derivations on *p*-semisimple *BCI*-algebras.

Received April 11, 2006; revised November 27, 2006.

AMS Subject Classification. 06F35, 06B99.

 $Key\ words.\ BCI-$ algebras, semisimpleBCI-algebras, ideals, left derivations, and regular derivations.

2. Preliminaries

Let X be a non-empty set with a binary operation * and a constant 0. The system (X, *, 0) is called a *BCI*-algebra, if it satisfies the following axioms for all $x, y, z \in X$:

 $\begin{array}{l} {\rm BCI-1} \ \left((x*y)*(x*z) \right)*(z*y) = 0, \\ {\rm BCI-2} \ \left(x*(x*y) \right)*y = 0, \\ {\rm BCI-3} \ x*x = 0, \\ {\rm BCI-4} \ x*y = 0 \ {\rm and} \ y*x = 0 \ {\rm imply} \ x = y. \end{array}$

Define a binary relation \leq on X by putting $x \leq y$ if and only if x * y = 0. Then the system (X, *, 0) is a partially ordered set. A *BCI*-algebra X satisfying $0 \leq x$ for all $x \in X$, is called *BCK*-algebra. A non-empty subset I of a *BCI*-algebra X is said to be an ideal of X if it satisfies for all $x, y \in X$:

(i)
$$0 \in I$$
,

(ii) $x * y \in I$ and $y \in I$ imply $x \in I$.

Any ideal I has the property $y \in I$ and $x \leq y$ imply $x \in I$.

In any *BCI*-algebra X, the following properties hold for all $x, y, z \in X$:

(1)
$$x * 0 = x$$
.

(2)
$$(x * y) * z = (x * z) * y$$
.

- (3) 0 * (x * y) = (0 * x) * (0 * y).
- (4) x * (x * (x * y)) = x * y.
- (5) ((x * z) * (y * z)) * (x * y) = 0.
- (6) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.
- (7) x * 0 = 0 implies x = 0.

For a *BCI*-algebra X, we denote by $X_+ = \{x \in X \mid 0 \leq x\}$, the *BCK*-part of X and by $G(X) = \{x \in X \mid 0 * x = x\}$, the *BCI*-*G*-part of X. If $X_+ = \{0\}$, then X is called a *p*-semisimple *BCI*-algebra. In a *p*-semisimple *BCI*-algebra X, the following hold for all $x, y, z \in X$:

- (8) (x * z) * (y * z) = x * y.
- (9) 0 * (0 * x) = x.
- (10) x * (0 * y) = y * (0 * x).
- (11) x * y = 0 implies x = y.

436

- (12) x * a = x * b implies a = b.
- (13) a * x = b * x implies a = b.
- (14) a * (a * x) = x.

Let X be a p-semisimple BCI-algebra. We define addition + as x + y = x * (0 * y), for all $x, y \in X$. Then (X, +) be an abelian group with identity 0 and x - y = x * y. Conversely, let (X, +) be an abelian group with identity 0 and let x - y = x * y. Then X is a p-semisimple BCI-algebra and x + y = x * (0 * y), for all $x, y \in X$ (see [5]). We denote $x \wedge y = y * (y * x)$, $0 * (0 * x) = a_x$, and

$$L_P(X) = \{ a \in X \mid x * a = 0 \text{ implies } x = a, \forall x \in X \}.$$

For any $x \in X$, $V(a) = \{a \in X \mid a * x = 0\}$ is called the branch of X with respect to a. We have $x * y \in V(a * b)$, whenever $x \in V(a)$ and $y \in V(b)$, for all $x, y \in X$ and all $a, b \in L_P(X)$. Note that $L_P(X) = \{x \in X \mid a_x = x\}$ which is the *p*-semisimple part of X, and X is a *p*-semisimple *BCI*-algebra if and only if $L_P(X) = X$. We note that $a_x \in L_P(X)$, for $0 * (0 * a_x) = a_x$, which implies that $a_x * y \in L_P(X)$, for all $y \in X$. It is clear that $G(X) \subset L_p(X)$ and x * (x * a) = aand $a * x \in L_P(X)$, for all $a \in L_P(X)$ and all $x \in X$. For more details, we refer to [1, 4, 7, 9, 11].

Definition 2.1.([6]) A *BCI*-algebra X is said to be commutative if $x \wedge y = y \wedge x$, for all $x, y \in X$.

Definition 2.2.([3]) Let X be a *BCI*-algebra. By a (l, r)-derivation of X, we mean a self map d of X satisfying the identity

$$d(x * y) = (d(x) * y) \land (x * d(y)), \text{ for all } x, y \in X.$$

If X satisfies the identity

$$d(x * y) = (x * d(y)) \land (d(x) * y), \text{ for all } x, y \in X,$$

then we say that d is a (r, l)-derivation of X.

Moreover, if d is both a (l, r)-derivation and (r, l)-derivation of X, we say that d is a derivation of X.

Definition 2.3.([3]) A self-map d of a *BCI*-algebra X is said to be regular if d(0) = 0.

Definition 2.4.([3]) Let d be a self-map of a *BCI*-algebra X. An ideal A of X is said to be d-invariant, if d(A) = A.

3. Left Derivations

In this section, we define the left derivations.

Definition 3.1. Let X be a *BCI*-algebra. By a left derivation of X, we mean a self-map D of X satisfying

$$D(x * y) = (x * D(y)) \land (y * D(x)), \text{ for all } x, y \in X.$$

Example 3.2. Let $X = \{0, 1, 2\}$ be a *BCI*-algebra with Cayley table defined by

*	0	1	2
0	0	0	2
1	1	0	2
2	2	2	0

Define a map $D: X \to X$ by

$$D(X) = \begin{cases} 2, & \text{if } x = 0, 1\\ 0, & \text{if } x = 2. \end{cases}$$

Then it is easily checked that D is a left derivation of X.

Proposition 3.3. Let D be a left derivation of a BCI-algebra X. Then for

- all $x, y \in X$, we have (1) x * D(x) = y * D(y). (2) $D(x) = a_{D(x) \wedge x}$.
- (3) $D(x) = D(x) \wedge x$.
- $(4) D(x) \in L_P(X).$

Proof. (1) Let $x, y \in X$. Then

$$D(0) = D(x * x) = (x * D(x)) \land (x * D(x)) = x * D(x).$$

Similarly, D(0) = y * D(y). So, x * D(x) = y * D(y). (2) Let $x \in X$. Then

$$D(x) = D(x * 0)$$

= $(x * D(0)) \land (0 * D(x))$
= $(0 * D(x)) * ((0 * D(x)) * (x * D(0)))$
 $\leq 0 * (0 * (x * D(0)))$
= $0 * (0 * (x * (x * D(x))))$
= $0 * (0 * (D(x) \land x))$
= $a_{D(x) \land x}$.

Thus $D(x) \leq a_{D(x) \wedge x}$. But

$$a_{D(x)\wedge x} = 0 * (0 * (D(x) \wedge x)) \le D(x) \wedge x \le D(x).$$

Therefore, $D(x) = a_{D(x) \wedge x}$. (3) Let $x \in X$. Then using (2), we have

$$D(x) = a_{D(x) \wedge x} \le D(x) \wedge x,$$

but we know that $D(x) \wedge x \leq D(x)$, and hence (3) holds. (4) Since $a_x \in L_P(X)$, for all $x \in X$, we get $D(x) \in L_P(X)$ by (2).

Remark 3.4. Proposition 3.3(4) implies that D(X) is a subset of $L_P(X)$.

Proposition 3.5. Let D be a left derivation of a BCI-algebra X. Then for all $x, y \in X$, we have

(1) y * (y * D(x)) = D(x).(2) $D(x) * y \in L_P(X).$

Proposition 3.6. Let D be a left derivation of a BCI-algerbra X. Then

(1) $D(0) \in L_P(X)$. (2) D(x) = 0 + D(x), for all $x \in X$.

- (3) D(x+y) = x + D(y), for all $x, y \in L_P(X)$.
- (4) D(x) = x, for all $x \in X$ if and only if D(0) = 0.
- (5) $D(x) \in G(X)$, for all $x \in G(X)$.

Proof. (1) Follows by Proposition 3.3(4).

(2) Let $x \in X$. From Proposition 3.3(4), we get $D(x) = a_{D(x)}$, so we have

$$D(x) = a_{D(x)} = 0 * (0 * D(x)) = 0 + D(x).$$

(3) Let $x, y \in L_P(X)$. Then

$$D(x + y) = D(x * (0 * y))$$

= $(x * D(0 * y)) \land ((0 * y) * D(x))$
= $((0 * y) * D(x)) * (((0 * y) * D(x)) * (x * D(0 * y)))$
= $x * D(0 * y)$
= $x * ((0 * D(y)) \land (y * D(0)))$
= $x * D(0 * y)$
= $x * (0 * D(y))$
= $x + D(y)$.

(4) Let D(0) = 0 and $x \in X$. Then

$$D(x) = D(x) \land x = x * (x * D(x)) = x * D(0) = x * 0 = x.$$

Conversely, let D(x) = x, for all $x \in X$. So it is clear that D(0) = 0. (5) Let $x \in G(X)$. Then 0 * x = x and so

$$D(x) = D(0 * x)$$

= (0 * D(x)) \lapha (x * D(0))
= (x * D(0)) * ((x * D(0)) * (0 * D(x)))
= 0 * D(x).

This gives $D(x) \in G(X)$.

Remark 3.7. Proposition 3.6(4) shows that a regular left derivation of a *BCI*-algebra is the identity map. So we have the following:

Proposition 3.8. A regular left derivation of a BCI-algebra is trivial.

Remark 3.9. Proposition 3.6(5) gives that $D(x) \in G(X) \subseteq L_P(X)$.

Definition 3.10. An ideal A of a *BCI*-algebra X is said to be *D*-invariant, if $D(A) \subset A$.

Now, Proposition 3.8 helps to prove the following theorem.

Theorem 3.11. Let D be a left derivation of a BCI-algebra X. Then D is regular if and only if every ideal of X is D-invariant.

Proof. Let D be a regular left derivation of a BCI-algebra X. Then Proposition 3.8 gives that D(x) = x, for all $x \in X$. Let $y \in D(A)$, where A is an ideal of X. Then y = D(x), for some $x \in A$. Thus

$$y * x = D(x) * x = x * x = 0 \in A.$$

Then $y \in A$ and $D(A) \subset A$. Therefore, A is D-invariant.

Conversely, let every ideal of X be D-invariat. Then $D(\{0\}) \subset \{0\}$, and hence D(0) = 0 and D is regular.

Finally, we give a characterization of a left derivation of a p-semisimple BCI-algebra.

Proposition 3.12. Let D be a left derivation of a p-semisimple BCIalgebra. Then the following hold for all $x, y \in X$:

(1) D(x * y) = x * D(y).(2) D(x) * x = D(y) * y.

 $(-) = (-) \qquad = (-) \qquad$

(3) D(x) * x = y * D(y).

Proof. (1) Let $x, y \in X$. Then

$$D(x * y) = (x * D(y)) \land (y * D(x)) = x * D(y).$$

(2) We know that

$$(x * y) * (x * D(y)) \le D(y) * y$$

and

$$(y * x) * (y * D(x)) \le D(x) * x.$$

This means that

$$((x * y) * (x * D(y))) * (D(y) * y) = 0,$$

and

$$((y * x) * (y * D(x))) * (D(x) * x) = 0.$$

 So

$$((x * y) * (x * D(y))) * (D(y) * y) = ((y * x) * (y * D(x))) * (D(x) * x).$$
 (I)

Using Proposition 3.3(1), we get

$$(x * y) * D(x * y) = (y * x) * D(y * x).$$
 (II)

By (1), (II) yields

$$(x\ast y)\ast (x\ast D(y))=(y\ast x)\ast (y\ast D(x)).$$

Since X is a p-semisimple BCI-algebra. (I) implies that

$$D(x) * x = D(y) * y.$$

(3) We have, D(0) = x * D(x). From (2), we get D(0) * 0 = D(y) * y or D(0) = D(y) * y. So D(x) * x = y * D(y).

Theorem 3.13. In a p-semisimple BCI-algebra X, a self-map D of X is left derivation if and only if it is derivation.

Proof. Assume that D is a left derivation of a BCI-algebra X. First, we show that D is a (r, l)-derivation of X. Then

$$D(x * y) = x * D(y)$$

= $(D(x) * y) * ((D(x) * y) * (x * D(y)))$
= $(x * D(y)) \land (D(x) * y).$

442

Now, we show that D is a (r, l)-derivation of X. Then

$$D(x * y) = x * D(y)$$

= $(x * 0) * D(y)$
= $(x * (D(0) * D(0)) * D(y)$
= $(x * ((x * D(x)) * (D(y) * y))) * D(y)$
= $(x * ((x * D(y)) * (D(x) * y))) * D(y)$
= $(x * D(y)) * ((x * D(y)) * (D(x) * y))$
= $(D(x) * y) \land (x * D(y)).$

Therefore, D is a derivation of X.

Conversely, let D be a derivation of X. So it is a (r, l)-derivation of X. Then

$$D(x * y) = (x * D(y)) \land (D(x) * y)$$

= $(D(x) * y) * ((D(x) * y) * (x * D(y)))$
= $x * D(y) = (y * D(x)) * ((y * D(x)) * (x * D(y)))$
= $(x * D(y)) \land (y * D(x)).$

Hence, D is a left derivation of X.

Acknowledgments

The authors are highly grateful to the referees and Professor B. Ahmad for the valuable comments and suggestions for improving the paper.

References

- M. Aslam and A. B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon., 36:1(1991), 39-45.
- [2] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc., 100(1990), 7-16.
- [3] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci., 159(2004), 167-176.
- [4] T. D. Lei and C. C. Xi, p-Radical in BCI-algebras, Math. Japon., 30:4(1985), 511-517.
- [5] D. J. Meng, BCI-algebras and abelian groups, Math. Japon., 32:5(1987), 693-696.
- [6] J. Meng and X. L. Xin, Commutative BCI-algebras, Math. Japon., 37:3(1992), 569-572.
- [7] J. Meng, Y. B. Jun and E. H. Roh, BCI-algebras of order 6, Math. Japon., 47:1(1998), 33-43.

HAMZA A. S. ABUJABAL AND NORA O. AL-SHEHRI

- [8] A. Nakajima and M. Sapanci, Left derivations on skew polynomial rings, Bull. Greek Math. Soc., 36(1991), 113-119.
- [9] X. L. Xin, E. H. Roh and J. C. Li, Some results on the BCI-G-part of BCI-algebras, Far East J. Math. Sci., Special Volume (Part III), (1997), 363-370.
- [10] J. Zhan and Y. L. Liu, On f-derivations of BCI-algebras, Internat. J. of Math. & Math. Sci., 11(2005), 1675-1684.
- Q. Zhang, Some other characterizations of p-semisimple BCI-algebras, Math. Japon., 36:5(1991), 815-817.

Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80003, Jeddah, 21589, Saudi Arabia.

E-mail: prof_h_abujabal@yahoo.co

Department of Mathematics, Faculty of Education, Science Sections, P. O. Box 33910, Jeddah, 21458, Saudi Arabia.

E-mail: nooooora55@hotmail.com

444