
1. 8×10^{10} electrons pass through a wire in 2 µs. The amount of current due to these electrons is:

(a) 1.6 mA	(b) 1.6 A	(c) 6.4 A	(d) 6.4 mA	(e) 2 A
2. An electron and a midway is zero, the ch		ed by a distance of 5 cm. If the is:	net force on a particle l	ocated at the
(a) -1 μC	(b) zero	(c) 1 µC	(d) 2 μC	(e) -2 µC
-		vay from another charge Q, pro 8-μC charge. The charge Q is:	duces a force four times	greater than
(a) 4 μC μC	(b) 15.4 μC	(c) 5.1 μC	(d) 20.5 μC	(e) 3.56
4. As shown in Fig. 1,	the resultant force o	on Q_3 will have a direction, with \cdot	+x-axis, of:	
(a) 150.6°	(b) 90°	(c) 119.4°	(d) 57.4°	(e) 35.1°
5. Two 1-g spheres as m/s ² . The magnitude		and placed 2 cm apart. When re h sphere is:	lease, they begin to acce	lerate at 144
(a) 1 μC	(b) 2 μC	(c) 93.3 nC	(d) 100 nC	(e) 80 nC
6. The magnitude of a	n electric field in wh	ich the electric force on electror	n equals in magnitude to	its weight is:
(a) 100 N/C	(b) 5.6×10 ⁻¹¹ N/	C (c) 3.92 kN/C	(d) 1.02×10 ⁻⁷ N/C	(e) zero
7. Two particles Q ₁ = these charges equals t		nC are separated by a distance	e of 2 m. The net electric	c field due to
(a) $1.61 \text{ m from } Q_2$	(b) 2.63 from Q ₁	(c) $0.39 \text{ from } Q_2$	(d) 1.61 from Q ₁	(e) zero
8. A closed surface en	closes a net charge c	of 4.425 pC. The net electric flux	through the surface (in S	I units) is:
(a) 2	(b) 4	(c) 0.5	(d) 2000	(e) 1
•		of an infinite plane sheet of pape e surface of the sheet is:	r has 6×10 ⁶ electrons. Th	ne magnitude
(a) 3.62 N/C	(b) 362 N/C	(c) 723 N/C	(d) 542 N/C	(e) zero
10. A metal sphere o point 0.15 m above th		ries a net charge of 4.68 nC. Th ere is:	e magnitude of the elect	tric field at a
(a) 52 N/C	(b) 1.83 N/C	(c) 3.25 N/C	(d) 1.44 N/C	(e) zero
11. In Fig. 2, the elect	ric dipole will move	:		
(a) clockwise	(b) anticlockwis	e (c) straight backward	(d) straight forward	(e) none
12. At the surface of a	conductor, the elect	tric field lines are:		
(a) parallel to the surface		(b) tangential on the surface (c) normal to the surface		the surface
(d) both (a) and (b)		(e) both (b) and (c)		

13. A charge is uniformly distributed with uniform volume charge density ρ throughout the volume of a sphere of radius 5 cm. If the magnitude of the electric field at 3 cm from its center is 40 kN/C, the value of ρ is: (b) $8.85 \,\mu\text{C}/\text{m}^3$ (c) 53.1 μ C/m³ (d) 17.7 μ C/m³ (a) $35.4 \,\mu C/m^3$ (e) zero **14.** Three charges $Q_1=15$ nC, $Q_2=-5$ nC, and Q_3 are randomly placed inside a cube of side length 2 cm. If the electric flux through one face of the cube is 1000 $N.m^2/C$, the value of Q_3 is: (a) 53.1 nC (b) 48.1 nC (c) 8.85 nC (d) 20.5 nC (e) 43.1 nC **15.** The electric potential in a region of space is given by $V(x,y)=4xy+x^2$ (volt). The strength of the electric field at the point (x=2 m, y=3 m) is: (a) 33 V/m (b) 18.4 V/m (c) 10.8 V/m(d) 17.9 V/m (e) 5 V/m **16.** A parallel-plate capacitor, of plate area 4 $\rm cm^2$ and separation of 0.6 mm, is entirely filled with a dielectric material. If the capacitance is 8.85 pF, the dielectric constant is: (a) 1.0 (b) 1.5 (c) 2.0 (d) 2.5 (e) 3.0 **17.** As shown in **Fig. 3**, the total charge is 17.7 nC. The voltage between the points **a** and **b** is: (a) 3.54 V (b) 1.5 V (c) 10 V (d) 17.7 V (e) 1.77 V **18.** The decrease of the capacitance of a capacitor will: (a) increase the voltage across the capacitor (b) increase the charge (c) do nothing (d) decrease the voltage across the capacitor (e) both (b) and (d) (d)**19.** A parallel-plate capacitor, of plate separation 4 cm, has an electric field of magnitude 300 N/C. The amount of energy needed to move a 6-mC charge from one plate of the capacitor to the other is: (a) 72 mJ (c) 7.2 eV (b) 36 µJ (d) 72 μJ (e) 12 mJ 20. The capacitance of an isolated sphere does not depend on its: (b) material (c) surface (d) circumference (a) volume (e) radius

$$(\frac{1}{2})^{1} = \frac{1}{2}$$

$$(\frac{1}{2})^{1} =$$

 $Q_3 = \xi \Phi - (Q + Q) = 8.85 \times 10^{12} \times 6000 - (15 \times 10^{9} - 5 \times 10^{9})$ = 43.1 nC (5) $E_{\pm} = \frac{\partial V}{\partial x} = -(4y'+2x) \Rightarrow E(2,3) = -(4x3+2x2) = -16 V/m$ $F = -\frac{\partial V}{\partial u} = -(4x) \rightarrow F(2,3) = -(4x2) = -8V/m$ $E = \sqrt{E^{2} + E^{2}} = \sqrt{(-16)^{2} + (-8)^{2}} = 17.9 \text{ V}/m$ $\begin{array}{c} \hline C = \frac{kAEb}{d} \rightarrow k = \frac{Cd}{AE} = \frac{8.85 \times 10^{12} \times 0.6 \times 10^{-3}}{4 \times 10^{4} \times 8.85 \times 10^{12}} 1.5 \end{array}$ (a) $V = \Phi$ where $C = (\frac{4 \times 16}{4 + 16}) + 68 = 10 \text{ nF}$ V = 17.7 × 109 = 1.77 V فينا تخطيم السعم بزدد الجهد. (B) $W = 9V = 9(Ed) = 6x10^{3} \times 300 \times 0.04 = 72 mJ$ (9) معرف أن سعتر اللق المعزولة فساعى 60 عدة أي عمد على دين الفظ (اللي هو المتكر كمط ، وساحة ، معمر) ولاي لرعمد على نوع ماديم -