1. 8×10^{10} electrons pass through a wire in $2 \mu \mathrm{~s}$. The amount of current due to these electrons is:
(a) 1.6 mA
(b) 1.6 A
(c) 6.4 A
(d) 6.4 mA
(e) 2 A
2. An electron and a proton are separated by a distance of 5 cm . If the net force on a particle located at the midway is zero, the charge of the particle is:
(a) $-1 \mu \mathrm{C}$
(b) zero
(c) $1 \mu \mathrm{C}$
(d) $2 \mu \mathrm{C}$
(e) $-2 \mu \mathrm{C}$
3. An unknown charge is located 4 cm away from another charge Q, produces a force four times greater than that produced if it is located 5 cm from an $8-\mu \mathrm{C}$ charge. The charge Q is:
(a) $4 \mu \mathrm{C}$
(b) $15.4 \mu \mathrm{C}$
(c) $5.1 \mu \mathrm{C}$
(d) $20.5 \mu \mathrm{C}$
(e) 3.56 $\mu \mathrm{C}$
4. As shown in Fig. 1, the resultant force on Q_{3} will have a direction, with $+x$-axis, of:
(a) 150.6°
(b) 90°
(c) 119.4°
(d) 57.4°
(e) 35.1°
5. Two 1-g spheres are charged equally and placed 2 cm apart. When release, they begin to accelerate at 144 $\mathrm{m} / \mathrm{s}^{2}$. The magnitude of the charge on each sphere is:
(a) $1 \mu \mathrm{C}$
(b) $2 \mu \mathrm{C}$
(c) 93.3 nC
(d) 100 nC
(e) 80 nC
6. The magnitude of an electric field in which the electric force on electron equals in magnitude to its weight is:
(a) $100 \mathrm{~N} / \mathrm{C}$
(b) $5.6 \times 10^{-11} \mathrm{~N} / \mathrm{C}$
(c) $3.92 \mathrm{kN} / \mathrm{C}$
(d) $1.02 \times 10^{-7} \mathrm{~N} / \mathrm{C}$
(e) zero
7. Two particles $Q_{1}=0.70 \mathrm{nC}$ and $\mathrm{Q}_{2}=12 \mathrm{nC}$ are separated by a distance of 2 m . The net electric field due to these charges equals to zero at:
(a) 1.61 m from Q_{2}
(b) 2.63 from Q_{1}
(c) 0.39 from Q_{2}
(d) 1.61 from Q_{1}
(e) zero
8. A closed surface encloses a net charge of 4.425 pC . The net electric flux through the surface (in SI units) is:
(a) 2
(b) 4
(c) 0.5
(d) 2000
(e) 1
9. Each square centimeter of the surface of an infinite plane sheet of paper has 6×10^{6} electrons. The magnitude of the electric field at a point 6 cm from the surface of the sheet is:
(a) $3.62 \mathrm{~N} / \mathrm{C}$
(b) $362 \mathrm{~N} / \mathrm{C}$
(c) $723 \mathrm{~N} / \mathrm{C}$
(d) $542 \mathrm{~N} / \mathrm{C}$
(e) zero
10. A metal sphere of radius 0.75 m carries a net charge of 4.68 nC . The magnitude of the electric field at a point 0.15 m above the surface of the sphere is:
(a) $52 \mathrm{~N} / \mathrm{C}$
(b) $1.83 \mathrm{~N} / \mathrm{C}$
(c) $3.25 \mathrm{~N} / \mathrm{C}$
(d) $1.44 \mathrm{~N} / \mathrm{C}$
(e) zero
11. In Fig. 2, the electric dipole will move:
(a) clockwise
(b) anticlockwise
(c) straight backward
(d) straight forward
(e) none
12. At the surface of a conductor, the electric field lines are:
(a) parallel to the surface
(b) tangential on the surface
(c) normal to the surface
(d) both (a) and (b)
(e) both (b) and (c)
13. A charge is uniformly distributed with uniform volume charge density ρ throughout the volume of a sphere of radius 5 cm . If the magnitude of the electric field at 3 cm from its center is $40 \mathrm{kN} / \mathrm{C}$, the value of ρ is:
(a) $35.4 \mu \mathrm{C} / \mathrm{m}^{3}$
(b) $8.85 \mu \mathrm{C} / \mathrm{m}^{3}$
(c) $53.1 \mu \mathrm{C} / \mathrm{m}^{3}$
(d) $17.7 \mu \mathrm{C} / \mathrm{m}^{3}$
(e) zero
14. Three charges $Q_{1}=15 \mathrm{nC}, \mathrm{Q}_{2}=-5 \mathrm{nC}$, and Q_{3} are randomly placed inside a cube of side length 2 cm . If the electric flux through one face of the cube is 1000 N.m²/C, the value of Q_{3} is:
(a) 53.1 nC
(b) 48.1 nC
(c) 8.85 nC
(d) 20.5 nC
(e) 43.1 nC
15. The electric potential in a region of space is given by $\mathbf{V}(\mathbf{x}, \mathbf{y})=\mathbf{4 x y +} \mathbf{x}^{\mathbf{2}}$ (volt). The strength of the electric field at the point $(\mathbf{x}=2 \mathrm{~m}, \mathbf{y}=3 \mathrm{~m})$ is:
(a) $33 \mathrm{~V} / \mathrm{m}$
(b) $18.4 \mathrm{~V} / \mathrm{m}$
(c) $10.8 \mathrm{~V} / \mathrm{m}$
(d) $17.9 \mathrm{~V} / \mathrm{m}$
(e) $5 \mathrm{~V} / \mathrm{m}$
16. A parallel-plate capacitor, of plate area $4 \mathrm{~cm}^{2}$ and separation of 0.6 mm , is entirely filled with a dielectric material. If the capacitance is 8.85 pF , the dielectric constant is:
(a) 1.0
(b) 1.5
(c) 2.0
(d) 2.5
(e) 3.0
17. As shown in Fig. 3, the total charge is 17.7 nC . The voltage between the points \mathbf{a} and \mathbf{b} is:
(a) 3.54 V
(b) 1.5 V
(c) 10 V
(d) 17.7 V
(e) 1.77 V
18. The decrease of the capacitance of a capacitor will:
(a) increase the voltage across the capacitor
(b) increase the charge
(c) do nothing
(d) decrease the voltage across the capacitor
(e) both (b) and (d)
19. A parallel-plate capacitor, of plate separation 4 cm , has an electric field of magnitude $300 \mathrm{~N} / \mathrm{C}$. The amount of energy needed to move a $6-\mathrm{mC}$ charge from one plate of the capacitor to the other is:
(a) 72 mJ
(b) $36 \mu \mathrm{~J}$
(c) 7.2 eV
(d) $72 \mu \mathrm{~J}$
(e) 12 mJ
20. The capacitance of an isolated sphere does not depend on its:
(a) volume
(b) material
(c) surface
(d) circumference
(e) radius

Fig. 1

Fig. 2

Fig. 3
(
(1)

$$
i=\frac{q}{t}=\frac{n e}{t}=\frac{8 \times 10^{10} \times 1.6 \times 10^{-19}}{2 \times 10^{-6}}=6.4 \mathrm{~mA}
$$

(2) ~

(3)

$$
\begin{aligned}
& F_{1}=4 r_{2}^{-} \Rightarrow \frac{k q Q}{r^{2}}=4 \frac{k q\left(8 \times 10^{-6}\right)}{r^{2}} \\
\Rightarrow \quad & Q=4\left(\frac{r_{1}}{r_{2}}\right)^{2} \times 8 \times 10^{-6}=4\left(\frac{4}{5}\right)^{2} \times 8 \times 10^{-6}=20.5 \mu \mathrm{c}
\end{aligned}
$$

(4)

$$
F_{x}^{F}=F_{23}=\frac{5 \times 10^{-9} \times 9 \times 10^{9} \times 2 \times 10^{-9}}{(0.03)^{2}}=0.0001 \mathrm{~N} \text { whwlosisili }
$$

$$
F_{y}=F_{13}=\frac{5 \times 10^{-9} \times 9 \times 10^{-9} \times 2 \times 10^{-9}}{(0.04)^{2}}=0.000056 \mathrm{~N} 4,110 \hat{5} \mathrm{y}_{12}
$$

$$
\theta=\tan ^{-1}\left(\frac{F_{y}}{F_{x}}\right)=\left(\frac{0.000056}{-0.0001}\right)=-29.4
$$

codi x 全

$$
\theta=180-29.4=150.6^{\circ}
$$

(5) $m a=\frac{k q^{2}}{r^{2}} \Rightarrow q=\sqrt{\frac{m a r^{2}}{k}}=\sqrt{\frac{0.001 \times\left(46 \times(0.02)^{2}\right.}{9 \times 109}}$
$\frac{q}{q}=80 \mathrm{nc}$
(6) $\quad q E=m g \Rightarrow E=\frac{m g}{7}=\frac{9.11 \times 10^{-31} \times 9.8}{1.6 \times 10^{19}}=5.6 \times 10^{-11} \mathrm{~N} / \mathrm{c}$
(7)

$$
\frac{k q_{1}}{(2-x)^{2}}=\frac{k q_{2}}{x^{2}} \Rightarrow \frac{\sqrt{q_{1}}}{(2-x)}=\frac{\sqrt{q_{2}}}{x}
$$

$$
\begin{aligned}
x \sqrt{q}_{1}=(2-x) \sqrt{q_{2}} \Rightarrow x \sqrt{q_{1}}+x \sqrt{q_{2}}=2 \sqrt{q_{2}} \\
x=\frac{2 \sqrt{q_{2}}}{\sqrt{q_{1}}+\sqrt{q_{2}}}=\frac{2 \sqrt{12 \times 10^{-9}}}{\sqrt{0.7 \times 10^{-1}}+\sqrt{12 \times 10^{-9}}}=1.61 \mathrm{~m}
\end{aligned}
$$

(8) $\phi=\frac{q}{E_{0}}=\frac{4.425 \times 10^{-12}}{8.85 \times 10^{-12}}=0.5$
(9)

$$
\begin{aligned}
E & =\frac{\sigma}{2 \epsilon_{0}}=\frac{q / A}{2 E_{0}}=\frac{n e}{2 E_{0} A} \\
& =\frac{6 \times 10^{6} \times 1.6 \times 10^{-19}}{2 \times 8.85 \times 10^{-12} \times(0.01)^{2}}=542 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

(10) $E=\frac{k q}{r^{2}}=\frac{9 \times 10^{9} \times 4.68 \times 10^{-9}}{(0.9)^{2}}=52 \mathrm{~N} C$

(12)

(B)

$$
\begin{aligned}
E & =\frac{P r}{3 E} \Rightarrow P=\frac{E(3 E)}{r}=\frac{40 \times 10^{3} \times 3 \times 8.85 \times 10^{-12}}{0.03} \\
& =35.4 \mu \mathrm{c} / \mathrm{m}^{3}
\end{aligned}
$$

(4)

Solust aral Unis Jóll ceridl

$$
\begin{aligned}
& \Phi=6 \times 1000=6000 \mathrm{~N} \cdot \frac{\mathrm{~m}^{2}}{c} \\
& \Phi=\frac{q_{\text {cac }}}{\epsilon_{0}}=\frac{Q_{1}+Q_{c}+Q_{s}}{\epsilon_{6}}
\end{aligned}
$$

$$
\begin{aligned}
Q_{3} & =C_{0} \Phi-\left(Q_{1}+Q_{2}\right)=8.85 \times 10^{-12} \times 6000-\left(15 \times 10^{-9}-5 \times 10^{-9}\right) \\
& =43.1 \mathrm{nc}
\end{aligned}
$$

(15)

$$
\begin{gathered}
E_{x}=-\frac{\partial V}{\partial x}=-(4 y+2 x) \Rightarrow \frac{E}{x}(2,3)=(4 \times 3+2 \times 2)=-16 \mathrm{~V} / \mathrm{m} \\
\frac{E}{y}=-\frac{\partial V}{\partial y}=-(4 x) \Rightarrow E_{y}(2,3)=-(4 \times 2)=-8 \mathrm{~V} / \mathrm{m} \\
E=\sqrt{E_{x}^{2}+E_{y}^{2}}=\sqrt{(-16)^{2}+(-8)^{2}}=17.9 \mathrm{~V} / \mathrm{m}
\end{gathered}
$$

(16) $c=\frac{k A \epsilon_{0}}{d} \Rightarrow k=\frac{c d}{A \epsilon_{0}}=\frac{8.85 \times 10^{-12} \times 0.6 \times 10^{-3}}{4 \times 10^{-4} \times 8.85 \times 10^{12}}=1.5$
(17) $V=\frac{Q}{C}$ where $C=\left(\frac{4 \times 16}{4+16}\right)+68=10 \mathrm{nF}$

$$
V=\frac{17.7 \times 10^{-9}}{10 \times 10^{9}}=1.77 \mathrm{~V}
$$

(18) cas $V=\frac{Q}{C}$
(19) $W=9 V=q(E d)=6 \times 10^{-3} \times 300 \times 0.04=72 \mathrm{~mJ}$
(20)

 - 宏د

