

KING ABDULAZIZ UNIVERSITY- FACULTY OF SCIENCE

PHYSICS DEPARTMENT- ELECTRICITY & MAGNETISM (PHYS 202)

ماينة الملك غير العزز مستقد الملك	Exam I - Sum	AER TERM 2011	TIME: 90 MINS				
Student Name:		Student Number:	Section:				
1. Two small charged balls have charges of q and nq where $q = 5 \mu C$. If they are 15 cm apart and the force between them is 30 N, the value of n is:							
(a) 15	(b) 12	(c) 9	(d) 6	<u>(e) 3</u>			
2. If the magnitude of the electrostatic force between two protons is equivalent to the weight of a single electron, the separation (in SI units) between theses protons is:							
(a) 7.2	<u>(b) 5.1</u>	(c) 1.68	(d) 2.27	(e) 0.12			
3. The number of el	3. The number of electrons that passes through a wire having current of 1 mA for 32 sec is:						
(a) 4×10 ¹⁹	(b) 4×10 ¹⁴	(c) 2×10 ¹⁹	<u>(d) 2×10¹⁷</u>	(e) 10 ¹⁸			
4. A distance of 10 cm separates two charges q_1 = 5 μ C and q_2 . If the attractive force between them is 36 N, the charge q_2 is:							
(a) 8 µC	<u>(b) -8 μC</u>	(c) 8 nC	(d) -8 nC	(e) 5 µC			
5. Eight equal charges (Q= 6 nC) are arranged on the corners of a cube of edge 2 m. The magnitude of the electrostatic force on a 2 μ C charge, located at the center of the cube, is:							
(a) 2.7×10 ⁻⁵ N	(b) 5.4×10 ⁻⁵ N	(c) 1.35×10 ⁻⁵ N	(d) 6.75×10 ⁻⁶ N	<u>(e) zero</u>			
6. The electric field at a point 2 m away from a point charge Q is 18 N/C (outwards). The charge Q is:							
(a) 8 nC	(b) -8 nC	(c) 16 nC	(d) -16 nC	(e) 8 µC			
7. A particle of mass 2 g is held stationary in air due to a downward electric field of magnitude 19.6 kN/C. The charge of the particle is:							
(a) 1 C	(b) -1 mC	(c) 1 mC	<u>(d) -1 μC</u>	(e) 1 µC			
8. Under the effect of a uniform electric field, an electron is uniformly accelerated from zero to 3×10^5 m/s within a distance of 2 cm. The magnitude of the electric field (in SI units) is:							
(a) 2.35	(b) 6.5	<u>(c) 12.8</u>	(d) 5.69	(e) 1.28			
9. In Fig. 1, a neutral particle A vertically enters a uniform electric field. The possible path of the particle is:							
(a) 1	(b) 2	<u>(c) 3</u>	(d) 4	(e) 5			

-	pole, consisting of +2 μ C and jue on the dipole is 1.8×10^{-6}			of 300 N/C. If	
(a) 1.2 cm	(b) 3 cm	<u>(c) 3 mm</u>	(d) 1.2 mm	(e) 1 m	
11. In Fig. 2 , the n	et electric flux through the (Gaussian surface S 1 (in S 1	I units) is:		
(a) 11.1	(b) 4.9	(c) -6.2	(d) 6.2	<u>(e) 4</u>	
	eld at a distance 12 cm fro utwards. The surface charg		al sphere of radius 10 cn	n is 1800 N/C	
<u>(a) 77 nC/m²</u>	(b) 64 nC/m ²	(c) -77 nC/m ²	(d) -64 nC/m ²	(e) zero	
-	th 2 mm carries a linear cha 4 pC. The strength of the ele			here of radius	
(a) 7 kN/C	(b) 5 kN/C	(c) 2.25 kN/C	<u>(d) 11.25 kN/C</u>	(e) zero	
14. The electric fie units) is:	eld at 2 cm from a long-strai	ght wire is 20 N/C. The ϵ	electric field at 5 cm from	the wire (in S l	
(a) 50	<u>(b) 8</u>	(c) 4	(d) 20	(e) 100	
15. The correct sta	atement for the electric field	l lines is:			
(a) They are direct	ted away from negative cha	rges (b) They ar	re directed into positive ch	narges	
<u>(c) They never cro</u>	<u>ss each other</u>	(d) Both an	(d) Both answers (a) and (b)		
(e) None of these					
1	4	S ₂	Q ₁ = -8 pC	S 1	
A ∳==== 2 ⊻ + + + -	<u>5``</u>	Q ₂ = 8 p	$Q_{3} = 90 \text{ pC}$ $Q_{4} = -46$	5.6 pC	
	Fig. 1		Fig. 2		

Physical quantity	Value	Physical quantity	Value
Charge of electron	e = 1.6×10 ⁻¹⁹ C	Charge of proton	e= 1.6×10 ⁻¹⁹ C
Mass of electron	$m_e = 9.11 \times 10^{-31} \text{ kg}$	Mass of proton	$m_p = 1.67 \times 10^{-27} \text{ kg}$
Coulomb's constant	$k=9\times 10^{9} N.m^{2}/C^{2}$	Permittivity constant	$\epsilon_0 = 8.85 \times 10^{-12} C^2 / (N.m^2)$

Summar 2011 - Gram I $F = \frac{kq_1q_2}{\gamma^2} \rightarrow \frac{q_2}{2} F \cdot r'/kq_1 \qquad q_2 q_2 nq$ 0 $nq = \frac{Fr^{2}}{kq} \Rightarrow n = \frac{Fr^{2}}{kq^{2}} = \frac{30x(0.15)^{2}}{9x10^{3}x(5x10^{2})^{2}} = 3$ $\frac{ke^{2}}{r^{2}} = \frac{mg}{eg} \Rightarrow r = \sqrt{\frac{ke^{2}}{mg}} \frac{9x_{10}x_{10}(1.6x_{10})^{2}}{9x_{10}x_{10}(1.6x_{10})^{2}} = 5.1 \text{ m}$ 0 $q = ne = it \Rightarrow n = it = 1x_{10}x_{32} = 2x_{10}^{17}$ $e = 1.6x_{10}^{19}$ 3 $F = \frac{k q_1 q_1}{r^2} \Rightarrow q = \frac{F r^2}{2} = \frac{36 \times (0.1)^2}{9 \times 10^3} = 8 \mu c$ 4 كَن المتوة من المتحنيم تجاذية Attractive ، عنى أن اصارتها تملغة 9 = - 8 mc 3 حا أى النحمات ٤ الدكان مسًا وبة ، يعني أن كل شخله مراح تُعنف المتنحلة المتوسطة F=0 بنقس القعة ، و نقير كطة العوى حيف $E = \frac{k_{P}}{\gamma^2} \rightarrow Q = \frac{E_{\gamma}^2}{K} \frac{18 \times (2)^2}{9 \times 10^9} = 8 nC$ 6 وحيث أن الجال خام في التعنه معملهم معدى أن التعنه موجه حتى يترف الحبم ، لايد من وجود هو تسم مساوليته ع المقدام وسعا كمسته (2) ت الديحام ، وحيث أى وزير الحيم كلوم للا معلى ملاب أن تملوم القوة الكربية الدعلى . وحيث أن الخال مرحب ، مام يد أن تلوم التحته _البه $9E = mg \Rightarrow q = mg = 2xio x 9.8 = -1 \mu C$ E 19.6xio³

(a) F= ma where
$$v=v_{1}+2ax \neq a = \frac{v^{2}-v_{1}^{2}}{2z}$$

 $a = (3xb)^{2}-(0)^{2} = 2.15 x lib m/s^{4}$
 $2 (26a)^{2}$
F= ma = cE \Rightarrow E= ma = 9.11xio³¹x 2.15xlib = 12.8 M/c
(a) cs a! size with in at a matrix dute set of the
(b) ds a! size with in at a matrix dute set of the
(c) a are to $\hat{x}^{2}-v_{1}x^{2}$
(c) $T=PE \Rightarrow P= T_{max} = 1.8xlib = 6xlib^{2} = 3 mm$
 $P=0d \Rightarrow d= @P = 6xlib^{2} = 3 mm$
 $P=0d \Rightarrow d= @P = 6xlib^{2} = 3 mm$
 $P=0d \Rightarrow d= @P = 6xlib^{2} = 3 mm$
 $P=0d \Rightarrow d= @P = 6xlib^{2} = 3 mm$
 $P=0d \Rightarrow d= P = 5xlib^{2} + 9xlib^{2} = 4 X lim/c$
 $E = 8xlib^{2} + 4c.6xlib^{2} + 90xlib^{2} = 4 X lim/c$
 $E = 1800 \times (0.22)^{2} = 9.68 x lib C$
 $E = \frac{kq}{r^{2}} \Rightarrow q = Er^{4} = 1800 \times (0.22)^{2} = 9.68 x lib C$
 $E = \frac{kq}{r^{2}} \Rightarrow q = Er^{4} = 1800 \times (0.22)^{2} = 9.68 x lib C$
 $E = \frac{kq}{r^{2}} \Rightarrow q = Er^{4} = 1800 \times (0.22)^{2} = 9.68 x lib C$
 $E = \frac{kq}{r^{2}} \Rightarrow q = \frac{9}{k} = \frac{9.(28xlib^{3} - 3t)}{6xlib} = \frac{1}{2}xlib^{3}$
 $b = a_{abb} = \frac{1}{2}xlib^{2} = \frac{1}{4}x(0,1)^{5}$
 $B = \frac{1}{r^{2}} \Rightarrow q = \frac{9}{k} = \frac{9.(28xlib^{3} - 3t)}{r^{4}} = \frac{1}{4}xlib^{3}$
 $E = 11.25 k k l l C$
 $(B) E = \frac{1}{r_{2}} \Rightarrow A = (2\pi E) E.r. , E = \frac{1}{2} \frac{4\pi E}{2} \frac{1}{r_{2}} \frac{4\pi E}{r_{2}}$
 $E = F(\frac{r}{r_{2}}) = 20(\frac{2}{5}) = 8 N l C$
 $(B) (c) 4 wall = 12a a^{2} x lib l dit is is integer i$