

1. Two small charged balls have charges of q and nq where $q=5 \mu C$. If they are 15 cm apart and the force between them is 30 N , the value of n is:
(a) 15
(b) 12
(c) 9
(d) 6
(e) 3
2. If the magnitude of the electrostatic force between two protons is equivalent to the weight of a single electron, the separation (in SI units) between theses protons is:
(a) 7.2
(b) 5.1
(c) 1.68
(d) 2.27
(e) 0.12
3. The number of electrons that passes through a wire having current of 1 mA for 32 sec is:
(a) 4×10^{19}
(b) 4×10^{14}
(c) 2×10^{19}
(d) 2×10^{17}
(e) 10^{18}
4. A distance of 10 cm separates two charges $\mathrm{q}_{1}=5 \mu \mathrm{C}$ and q_{2}. If the attractive force between them is 36 N , the charge q_{2} is:
(a) $8 \mu \mathrm{C}$
(b) $-8 \mu \mathrm{C}$
(c) 8 nC
(d) -8 nC
(e) $5 \mu \mathrm{C}$
5. Eight equal charges $(Q=6 \mathrm{nC})$ are arranged on the corners of a cube of edge 2 m . The magnitude of the electrostatic force on a $2 \mu \mathrm{C}$ charge, located at the center of the cube, is:
(a) $2.7 \times 10^{-5} \mathrm{~N}$
(b) $5.4 \times 10^{-5} \mathrm{~N}$
(c) $1.35 \times 10^{-5} \mathrm{~N}$
(d) $6.75 \times 10^{-6} \mathrm{~N}$
(e) zero
6. The electric field at a point 2 m away from a point charge Q is $18 \mathrm{~N} / \mathrm{C}$ (outwards). The charge Q is:
(a) 8 nC
(b) -8 nC
(c) 16 nC
(d) -16 nC
(e) $8 \mu \mathrm{C}$
7. A particle of mass 2 g is held stationary in air due to a downward electric field of magnitude $19.6 \mathrm{kN} / \mathrm{C}$. The charge of the particle is:
(a) 1 C
(b) -1 mC
(c) 1 mC
(d) $-1 \mu \mathrm{C}$
(e) $1 \mu \mathrm{C}$
8. Under the effect of a uniform electric field, an electron is uniformly accelerated from zero to $3 \times 10^{5} \mathrm{~m} / \mathrm{s}$ within a distance of 2 cm . The magnitude of the electric field (in SI units) is:
(a) 2.35
(b) 6.5
(c) 12.8
(d) 5.69
(e) 1.28
9. In Fig. 1, a neutral particle A vertically enters a uniform electric field. The possible path of the particle is:
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
10. An electric dipole, consisting of $+2 \mu \mathrm{C}$ and $-2 \mu \mathrm{C}$ charges, is placed in a uniform electric field of $300 \mathrm{~N} / \mathrm{C}$. If the maximum torque on the dipole is $1.8 \times 10^{-6} \mathrm{~N} . \mathrm{m}$, the length of the dipole is:
(a) 1.2 cm
(b) 3 cm
(c) 3 mm
(d) 1.2 mm
(e) 1 m
11. In Fig. 2, the net electric flux through the Gaussian surface $\mathbf{S}_{\mathbf{1}}$ (in SI units) is:
(a) 11.1
(b) 4.9
(c) -6.2
(d) 6.2
(e) 4
12. The electric field at a distance 12 cm from the surface of a metal sphere of radius 10 cm is $1800 \mathrm{~N} / \mathrm{C}$ directed radially outwards. The surface charge density is:
(a) $77 \mathrm{nC} / \mathrm{m}^{2}$
(b) $64 \mathrm{nC} / \mathrm{m}^{2}$
(c) $-77 \mathrm{nC} / \mathrm{m}^{2}$
(d) $-64 \mathrm{nC} / \mathrm{m}^{2}$
(e) zero
13. A wire of length 2 mm carries a linear charge density $8 \mathrm{nC} / \mathrm{m}$ and surrounded by a metal sphere of radius 4 mm and charge 4 pC . The strength of the electric field just outside the sphere is:
(a) $7 \mathrm{kN} / \mathrm{C}$
(b) $5 \mathrm{kN} / \mathrm{C}$
(c) $2.25 \mathrm{kN} / \mathrm{C}$
(d) $11.25 \mathrm{kN} / \mathrm{C}$
(e) zero
14. The electric field at 2 cm from a long-straight wire is $20 \mathrm{~N} / \mathrm{C}$. The electric field at 5 cm from the wire (in SI units) is:
(a) 50
(b) 8
(c) 4
(d) 20
(e) 100
15. The correct statement for the electric field lines is:
(a) They are directed away from negative charges
(b) They are directed into positive charges
(c) They never cross each other
(d) Both answers (a) and (b)
(e) None of these

Fig. 1

Fig. 2

Physical quantity	Value		Physical quantity	Value
Charge of electron	$\|\mathrm{e}\|=1.6 \times 10^{-19} \mathrm{C}$	Charge of proton	$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$	
Mass of electron	$\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$	Mass of proton	$\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$	
Coulomb's constant	$\mathrm{k}=9 \times 10^{9} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{C}^{2}$	Permittivity constant	$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} . \mathrm{m}^{2}\right)$	

Summar 2011 - Exam I
(1)

$$
\begin{aligned}
& F=\frac{k q_{1} q_{2}}{r^{2}} \Rightarrow \frac{q}{2}=F \cdot r^{2} / k q_{1} \quad q_{1}=q \quad, \quad q=n q \\
& n q=\frac{F r^{2}}{k q} \Rightarrow n=\frac{F r^{2}}{k q^{2}}=\frac{30 \times(0.15)^{2}}{9 \times 10^{9} \times\left(5 \times 10^{-6}\right)^{2}}=3
\end{aligned}
$$

(2) $\frac{k e^{2}}{r^{2}}=m_{e} g \Rightarrow r=\sqrt{\frac{k e^{2}}{m g}}=\sqrt{\frac{9 \times 10^{9} \times\left(1.6 \times 10^{-19}\right)^{2}}{9.11 \times 10^{-31} \times 9.8}}=5.1 \mathrm{~m}$
(3) $q=n e=i t \Rightarrow n=\frac{i t}{e}=\frac{1 \times 10^{-3} \times 32}{1.6 \times 10^{-19}}=2 \times 10^{17}$
(4) $F=\frac{k q_{1} q_{2}}{r^{2}} \Rightarrow q_{2}=\frac{F r^{2}}{k q_{1}}=\frac{36 \times(0.1)^{2}}{9 \times 10^{9} \times 5 \times 10^{-6}}=8 \mu \mathrm{c}$

$$
q_{2}=-8 \mu c
$$

(5)
$F=0$

(6) $E=\frac{K Q}{r^{2}} \Rightarrow Q=\frac{E \gamma^{2}}{K}=\frac{18 \times(2)^{2}}{9 \times 10^{9}}=8 n C$

$$
q E=m g \Rightarrow q=-\frac{m g}{E}=-\frac{2 \times 10^{-3} \times 9.8}{19.6 \times 10^{3}}=-1 \mu c
$$

(8) $F=m a$ where $v^{2}=y_{0}^{2}+2 a x \Rightarrow a=\frac{v^{2}-v_{0}^{2}}{2 x}$

$$
\begin{gathered}
a=\frac{\left(3 \times 10^{5}\right)^{2}-(0)^{2}}{2(0.02)}=2.25 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2} \\
F=m a=e E \Rightarrow E=\frac{m a}{e}=\frac{9.11 \times 10^{-31} \times 2.25 \times 10^{2}}{1.6 \times 10^{19}}=12.8 \mathrm{~N} / \mathrm{c}
\end{gathered}
$$

 (3) (3)
(10) $\quad \tau=P E \Rightarrow P=\frac{\tau_{\text {max }}}{E}=\frac{1.8 \times 10^{-6}}{300}=6 \times 10^{-1} \mathrm{C} . \mathrm{m}$ No.

$$
P=Q d \Rightarrow d=\frac{P P}{Q}=\frac{6 \times 10^{-9}}{2 \times 10^{-6}}=3 \mathrm{~mm}
$$

(11) $\Phi=\frac{q_{\text {enc }}}{\epsilon}=\frac{-8 \times 10^{-12}-46.6 \times 10^{-12}+90 \times 10^{-12}}{8.85 \times 10^{-12}}=4 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}$
(12)

$$
E=\frac{k q}{r^{2}} \Rightarrow q=\frac{E r^{2}}{k}=\frac{1800 \times(0.22)^{2}}{9 \times 10^{9}}=9.68 \times 10^{-9} \mathrm{C}
$$

$$
\sigma=\frac{q}{A}=\frac{q}{4 \pi R^{2}}=\frac{9.68 \times 10}{4 \pi \times(0.1)^{2}}=77 \mathrm{nc} / \mathrm{m}^{2}
$$

(13) $E=\frac{k Q}{r^{2}}=\frac{k(\lambda L+q)}{r^{2}}=\frac{9 \times 10^{9} \times\left(8 \times 10^{-4} \times 2 \times 10^{-3}+4 \times 10^{-12}\right)}{\left(4 \times 10^{-3}\right)^{2}}$

$$
E=11.25 \mathrm{kN} / \mathrm{c}
$$

(14) $E_{1}=\frac{\lambda}{2 \pi \epsilon_{0} r_{1}} \Rightarrow \lambda=\left(2 \pi \epsilon_{0}\right) E_{1} r_{1}, E_{2}=\frac{\lambda}{2 \pi E_{2} r_{2}}=\frac{\left(2 \pi \epsilon_{0}\right) E_{r} r_{1}}{2 \pi E r_{2}}$

$$
E_{2}=E_{1}\left(\frac{r_{1}}{r_{2}}\right)=20\left(\frac{2}{5}\right)=8 \mathrm{~N} / \mathrm{C}
$$

(15)

