Math 241 (A02) - Midterm Exam
Winter 2005/2006
Part I (18 points)

Show all work to get full credit. No work may amount to no credit.

Name: PID#:

1. (4 Points) Identify the following statements as true or false:
 a. Every homogenous LS with m equations and n unknowns has a nontrivial solution if $m < n$.
 b. The identity matrix is a diagonal matrix with diagonal entries equal to 1.
 c. An upper triangular matrix is a square matrix with all entries above the diagonal equal to zero.
 d. The transpose of a 10×4 matrix is a 10×10 matrix.
 e. The subspace spanned by the columns of a matrix A is called the range of A.
 f. Any linearly independent set of n vectors in F^n is a basis of F^n.
 g. If a subspace W has a basis of 5 vectors, then the dimension of W is 6.
 h. For any two $n \times n$ matrices A and B, $AB = BA$.

2. (5 Points)
 a. For $A = \begin{bmatrix} 1 & 2 & 3 \\
 1 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 1 \\
 0 & 2 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} 7 & -3 & 11 \\
 5 & 0 & 9 \end{bmatrix}$
 verify that $(A + C)^T = A^T + C^T$ and $(AB)^T = B^T A^T$.
 b. Find the symmetric matrix A such that

 $$X^T A X = 7x_1^2 + 9x_2^2 - 5x_3^2 + 2x_1 x_2 + 22x_1 x_3$$

 where $X = \begin{bmatrix} x_1 \\
 x_2 \\
 x_3 \end{bmatrix}$.
3. (3 points) Determine whether \(\begin{bmatrix} -2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \end{bmatrix} \) and \(\begin{bmatrix} -1 \\ 8 \end{bmatrix} \) form a basis of \(\mathbb{R}^2 \). If not, find a subset that forms a basis.
4. (3 points) Let
\[A = \begin{bmatrix} 3 & 4 & -7 \\ -1 & 3 & -2 \\ 1 & 2 & 1 \end{bmatrix}. \]

Does the vector \(\begin{bmatrix} 10 \\ 1 \\ 8 \end{bmatrix}\) belong to the subspace spanned by the columns of \(A\)? If yes, express it as a linear combination of the columns of \(A\).
5. (3 points) Reduce the following matrix into reduced row echelon form:

\[
\begin{bmatrix}
3 & 1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
2 & 3 & 4 & 5
\end{bmatrix}.
\]