

Programming Tools

I) Iteration

 Iteration is a loop or repeatedly executed instruction cycle, with only

a few changes in each cycle. In programming language that are not matrix

or array-oriented, like C, Pascal, or FORTRAN, even a simple matrix

multiplication needs three nested loops (over rows, columns, and the

indices). Since R is matrix-oriented, these operations are much more

efficient and easy to formulate in mathematical terms. This means they

are faster than loops and the code is much easier to read and write.

The following table contains the different forms of loops.

Forms of loop Syntax

for loop for (index in range) { expressions to be executed }

while loop while (condition) { expressions to be executed }

repeat loop repeat { expressions to be executed

if (condition) break}

Example :

Calculate the sum over 1, 2, 3, . . . until the sum is larger than 100 by

using different loops.

1. while loop:

n=0;sumn=0

while (sumn<=100)

{ n=n+1

 sumn=sumn+n

}

2. repeat loop

n=0;sumn=0

repeat

{ n=n+1

 sumn=sumn+n

 if (sumn>= 100) break}

3. for loop

n=0;sumn=0

for (i in 1:100) sumn=sumn+i

Try if sumn start with 101

The looping variable i values can be of any mode

a) A numeric looping variable :

 for (i in c(3, 2, 9, 6))

 print (i^2)

 or

 x <− c(3, 2, 9, 6); for (i in 1:4) print((x[i]^2)

b) A character looping variable:

 Ttransport.media <− c(“car”, “bus”, “ train”)

 For (i in transport.media)

 print i

II) Conditional Execution (The if statement)

• if (condition) { expression 1 }

• if (cond 1) { expr 1 }

 else if (cond 2) { expr 2 }

 else { last expr }

• ifelse (condition, expression for true, expression for false)

Examples:

if (mode(x)!="character") log(x) # try when x="d",3,NA

test 2 conditions

if (mode(x)!="character" && x>0) log(x)

|| && not | &

distribution="exp"

if (distribution=="gamma") rgamma(20,5) else

if (distribution=="exp") rexp(20) else

if (distribution=="norm") rnorm(20) else

print("unknown distribution")

#similar to switch function

x=c(4,1,-9,0)

logx=rep(0,length(x))

for (i in 1:length(x))

{ if (x[i]>0) logx[i]=log(x[i])

 else logx[i]=NA}

#same as

 ifelse(x>0,log(x),NA) # evaluate a condition for the whole vector or

array

ifelse(x>0,sqrt(x),NA)

 III) Writing Function

Functions do things with data

“Input”: function arguments (0,1,2,…)

“Output”: function result (exactly one)

Example:

add = function(a,b)

{ result = a+b

 return(result) }

Syntax:

 Function_name <- function (input arguments)

 {

 function.body (R expressions)

 return (list (output argument))

 }

then you can call the function using the calling routine

function_name (argument)

Note that:

1. All variables declared inside the body of a function are local

and vanish after the function is executed.

2. Better to use return function if we need more than one value to

return from function.

Examples:

Cubic<-function(xx){return(xx^3)}

Cubic(3);xx

Cubic<-function(xx){xx^3} # same as above

Cubic(3)

Cubic2<-function(xx)

{y=2^xx;return(xx^3,y)}

Cubic2(3)

Cubic2<-function(xx)

{y=2^xx;y2=xx^3}

Cubic2(3) # Guess what is the output???????????????????/

sumxy<-(x,y){sumxy=x+y}

sumxy(3,8)

#Generate a specified number of random numbers from a given

distribution

my.ran<-function(n,distribution,shape){

if (distribution=="gamma") rgamma(n,shape) else

if (distribution=="exp") rexp(n) else

if (distribution=="norm") rnorm(n) else

print("unknown distribution")

}

distribution="norm"

my.ran(20,distribution)

Create your own function

X<-seq(2,10,2);y<-2:6

F<-(3*X^4)/(X+y);F

F1<-function(X,y){(3*X^4)/(X+y)}

W<-F1(X,y);W

> X<-seq(2,10,2);y<-2:6

> F<-(3*X^4)/(X+y);F

[1] 12.0000 109.7143 388.8000 945.2308 1875.0000

> F1<-function(X,y){(3*X^4)/(X+y)}

> W<-F1(X,y);W

[1] 12.0000 109.7143 388.8000 945.2308 1875.0000

#function that compute mean and standard error

std.error<-function(x)

{ std.error=sqrt(sum(x-mean(x))^2)/(length(x)*(length(x)-1))

return(mean(x),std.error)}

x=c(1,5,7,8,4,6,9)

std.error(x)

Construct a function that assign an even number to 1, and an odd number

to 0 only at a line (use ifelse)

For loops

In R a while takes this form, where variable is the name of your iteration variable, and

sequence is a vector or list of values:

for (variable in sequence) expression

The expression can be a single R command - or several lines of commands wrapped in

curly brackets:

for (variable in sequence) {

 expression

 expression

 expression

}

Here is a quick trivial example, printing the square root of the integers one to ten:

> for (x in c(1:10)) print(sqrt(x))

[1] 1

[1] 1.414214

[1] 1.732051

[1] 2

[1] 2.236068

[1] 2.449490

[1] 2.645751

[1] 2.828427

[1] 3

[1] 3.162278

While loops

In R a while takes this form, where condition evaluates to a boolean (True/False) and

must be wrapped in ordinary brackets:

while (condition) expression

As with a for loop, expression can be a single R command - or several lines of commands

wrapped in curly brackets:

while (condition) {

 expression

 expression

 expression

}

We'll start by using a "while loop" to print out the first few Fibonacci numbers: 0, 1, 1, 2,

3, 5, 8, 13, ... where each number is the sum of the previous two numbers. Create a new

R script file, and copy this code into it:

a <- 0

b <- 1

print(a)

while (b < 50) {

 print(b)

 temp <- a + b

 a <- b

 b <- temp

}

If you go to the script's "Edit" menu and pick "Run all" you should get something like this

in the R command console:

> a <- 0

> b <- 1

> print(a)

[1] 0

> while (b < 50) {

+ print(b)

+ temp <- a + b

+ a <- b

+ b <- temp

+ }

[1] 1

[1] 1

[1] 2

[1] 3

[1] 5

[1] 8

[1] 13

[1] 21

[1] 34

The code works fine, but both the output and the R commands are both shown in the R

command window - its a bit messy.

This next version builds up the answer gradually using a vector, which it prints at the end:

x <- c(0,1)

while (length(x) < 10) {

 position <- length(x)

 new <- x[position] + x[position-1]

 x <- c(x,new)

}

print(x)

To understand how this manages to append the new value to the end of the vector x, try

this at the command prompt:

> x <- c(1,2,3,4)

> c(x,5)

[1] 1 2 3 4 5

to introduce the if statement.

Writing Functions

This following script uses the function() command to create a function (based on the

code above) which is then stored as an object with the name Fibonacci:

Fibonacci <- function(n) {

 x <- c(0,1)

 while (length(x) < n) {

 position <- length(x)

 new <- x[position] + x[position-1]

 x <- c(x,new)

 }

 return(x)

}

Once you run this code, there will be a new function available which we can now test:

> Fibonacci(10)

 [1] 0 1 1 2 3 5 8 13 21 34

> Fibonacci(3)

[1] 0 1 1

> Fibonacci(2)

[1] 0 1

> Fibonacci(1)

[1] 0 1

That seems to work nicely - except in the case n == 1 where the function is returning the

first two Fibonacci numbers! This gives us an excuse

The If statement

In order to fix our function we can do this:

Fibonacci <- function(n) {

 if (n==1) return(0)

 x <- c(0,1)

 while (length(x) < n) {

 position <- length(x)

 new <- x[position] + x[position-1]

 x <- c(x,new)

 }

 return(x)

}

In the above example we are using the simplest possible if statement:

if (condition) expression

The if statement can also be used like this:

if (condition) expression else expression

And, much like the while and for loops the expression can be multiline with curly

brackets:

Fibonacci <- function(n) {

 if (n==1) {

 x <- 0

 } else {

 x <- c(0,1)

 while (length(x) < n) {

 position <- length(x)

 new <- x[position] + x[position-1]

 x <- c(x,new)

 }

 }

 return(x)

}

Do you like this version better that the previous one?

