The Derivative Dr.Hamed Al-Sulami

THE DERIVATIVE

DR.HAMED AL-SULAMI

Definition 0.1. Let I C R be an interval, let f: I — R, and let ¢ € I. We say f’(c) is the derivative of
z) — f(c
@ = 1)
x—c

f at cif, for all € > 0 there exists § > O such thatif z € Eand 0 < |[z—a| < § = \f | <e.

In other word, the derivative of f at c is given by the limit

provided this limit exists.

Example 0.1. Let f(z) = a, a € R. Prove that f'(¢) =0V c € R.
Solution:

We have f(x) = a, and f(c¢) = a. Then

Hence f'(c) = 0.
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Example 0.2. Let f(z) = 2% Prove that f'(c) = 2¢, V ¢ € R.
Solution:

We have f(z) = 2%, and f(c) = ¢®. Then

f/(c) — hm f(x) B f(C)
r—c Tr — C
22 _ 2

= lim
r—c I —C

= lim =@+ .
T—cC €r—7T

= lim(z + ¢)

=c+c

= 2c.

Hence f/(c) = 2ec.

Example 0.3. Let f(z) = 2", n € N. Prove that f/(c) =nc"~!, VceR.
Solution:

We have f(z) = 2", and f(c) = ¢, and note that 2™ — ¢" = (z —¢) (3},

i fl@) = fle)
fie) = lim ———=
= lim o

k=1

Hence f'(c) = nc" L.

x”*kck’l) . Then
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Theorem 0.1. Let f : (a,b) — R and let ¢ € (a,b). Then f is differentiable at ¢ with derivative f'(c) if

and only if for every sequence {x,} C (a,b) such that lim,_,oc x,, = ¢ and x, # cV n € N, then

n—oo Xy —C
Proof. We have proved a similar theorem in the Limits section. O

Theorem 0.2. If f: I — R has a derivative at ¢ € I, then f is continuous at c.

Proof. For all x € I, = # ¢, we have

Now,

t (P5=7) e
— £(6).0
=0.

Therefore lim f(x) = f(c) so f is continuous at c.

r—c
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Example 0.4. Let f(z) = |z|. Prove that f is not differentiable at 0.

For each n € N, let x,, = % and y, = _Tl Then lim,, .o , =0 =lim,, o0 Yn. Now,
1 1
_ 1y _ f(o 1_
lim f(an) = £(0) = lim f(") T 1) = lim #5— = lim 1=1,
and
-1 1

_ =1y _ £(0 1_

Hence lim,_, (32: ©) does not exists.

Theorem 0.3. Let f,g: (a,b) — R are differentiable at ¢ € (a,b). Then

Proof. We will prove parts (a) and (c).

(ft9)(x) = (f+9)(c)

(a)(f +9)'(¢) = lim

_ 1; flx) + g(w)_— fle) —g(c)

_ im (f(x) — f(i)) i (9(z) —9(c))
_ gim [f@) = f(©) | g(@) —g(c)
_pim L@ =S 9(@) —g(0)
=f(c)+4 (o).
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g T —c
f(z)  flo)
~ i @) 9(0)
f(x)g(c) = fle)g(x)
— lim g(z)g(c)
_ iy T@)9(0)=F(e)g(e) + [l)g(c) — f(c)g(2)
T g(z)g(c)(z —c)
— i 1O (@) = f(0)] = f(9)[9(x) — g(c)]
z—c g(z)g(c)(z —¢)
— tim {g(C)U(ﬂv) —fle]  flo)g(z) —g(C)]}
a—c | g(z)g(c)(x—c)  g(z)g(c)(z —c)
— tim {g(C)U(ﬂv) - f(C)]}  lim [f(C)[g(w) —g(C)}]
z—c | g(z)g(c)(z —c) z—c | g(x)g(c)(z —c)
— i [ 2999 T 4 [F@ = FOT] i ©) |y [9@) =9(0)
= o= {g(@g(@] i%{ (@—c H [Lc [g c g(mﬂ iw{ T—0) ”

Definition 0.2. Let I C R be an interval, let f: I — R, and let c € I.

(i) We say f has a relative maximum at c if there exists 6 > 0 such that f(z) < f(¢), Va € (¢ = d,c+ ).

(ii) We say f has a relative minimum at c if there exists ¢ > 0 such that f(c) < f(x), Va € (¢ —d,¢+9).

(iii) We say f has a relative extremum at c if [ has either a relative maximum or relative minimum at c.

Theorem 0.4. Let [ : (a,b) — R and let ¢ € (a,b). If f has a relative extremum at ¢ and f'(c) exists,

then f'(c) = 0.

Proof. Suppose f has a relative maximum at ¢. [We will prove that f'(¢) = 0.] Then there exists 6 > 0

such that f(z) < f(¢), Va € (¢c—6,c+ ). Now, if c —§ <z < ¢, then f(z) < f(c) = f(z) — f(c) <0

F@) = F©) - o s i, @) = (O

Tr—cC r —C

and x — ¢ < 0. Hence

Also, if e <z < ¢+, then f(z) < f(¢) = f(z) — f(c) <0 and x — ¢ > 0. Hence

fx) = fle)

r —C

lim, .

> 0. Therefore f'(c¢) >0 (1).
f(z) = f(e)

< 0. Thus

Tr —cC

< 0. Therefore f'(c) <0 (2). By (1) and (2) we get f'(c) = 0. O
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Theorem 0.5. [ Rolle’s Theorem:] Let f : [a,b] — R be continuous on [a,b] and differentiable on

(a,b). If f(a) = f(b), then there exists ¢ € (a,b) such that f'(c) = 0.

Proof. Since f is continuous on [a, b], then there exist ¢, d € [a,b] such that f(c) = sup{f(z): z € [a,b]}
and f(d) = inf{f(x) : € [a,b]}. Now, if f(c) = f(d), then f(z) is constant and f'(x) =0, V = € [a,]].
If f(c) # f(d), since f(a) = f(b), then at least f(c) # f(a) or f(d) # f(a). Suppose f(c) # f(a), then

¢ € (a,b) and f has a relative maximum at ¢. Hence f'(c) = 0. O

Theorem 0.6. [ Mean Value Theorem:] Let f : [a,b] — R be continuous on [a,b] and differentiable

1) = f(a)

n (a,b). If f(a) = f(b), then there exists ¢ € (a,b) such that f'(c) = b a

f(b) — f(a)
b—a

[a,b] and is differentiable on (a,b). Now, g(a) = f(a) — f(a) — [f(b)—f(a)

b—a
B f(b) — f(a) _ : :
g(b) = f(a)— f(b)— R (b—a) = 0. Hence g satisfies the hypotheses of Rolle’s Theorem. Then
—a

there exists ¢ € (a,b) such that ¢’(¢) = 0. Thus 0 = ¢'(c) = f'(c) — {f(bl))—i(a)} .

f(bg);:g(a)' U

Proof. Let g : [a,b] — R defined by g(z) = f(x) — f(a) — (x — a). Then g is continuous on

](aa)Oand

Therefore f'(c) =

Example 0.5. Prove that e* >z + 1, V2 € R.
Solution:

Let f(t) = €' then f is continuous and differentiable on R. Now, if z € R, then on the interval [0,z

7f(x) — f(()) Thus e = L — 60.

or [z,0] f satisfies the M.V.T. Hence there exists ¢ such that f’(c) = 0
x— x

Hence e” — 1 = e“z. Since e > 1, then e” — 1 = ¢“x > 1.x. Thus €* — 1 > x. Therefore e* > x + 1.

Example 0.6. Prove that |sinz| < |z|.
Solution:

Let f(t) =sint then f is continuous and differentiable on R. Now, if € R, then on the interval [0, z] or

_ £0 oz — sin 0

[x,0] f satisfies the M.V.T. Hence there exists ¢ such that f/(c) = L(J)c() Thus cos¢ = ot MY
x— x

Hence sinz — sin0 = z cos ¢. Since |cosc| < 1, then |sinz| = | cosc||z| < 1]z|. Therefore |sinz| < |x|.
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