Surface Areas of Revolution

A surface of revolution is a surface that is generated by revolving a plane curve about in axis that lies in the same plane as the curve.

Some surface of revolution

Definition. If f is a smooth non-negative function on the interval $[a, b]$, then the Surface area S of revolution that is generated by revolving the portion of the curve $y=f(x)$ between $x=a$ to $x=b$ about x-axis is defined as

$$
S_{x-\mathrm{axix}}=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x .
$$

Moreover, if g is non-negative and $x=g(y)$ is a smooth curves on the interval $[a, b]$, then the Surface area S of revolution that is generated by revolving the portion of the curve $x=g(y)$ between from $y=c$ to $y=d$ about y-axis is defined as

$$
S_{y-\text { axix }}=2 \pi \int_{c}^{d} x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

Example. Find the area of the surface that is generated by the portion of the curve $y=x^{2}$ between $x=1$ to $x=2$ about y-axis.
Solution. If $x=\sqrt{y}$, then $\frac{d x}{d y}=\frac{1}{2 \sqrt{y}}$

$$
S_{y-\mathrm{axix}}=2 \pi \int_{1}^{4} x \sqrt{1+\left(\frac{1}{2 \sqrt{y}}\right)^{2}} d y=\pi \int_{1}^{4} \sqrt{4 y+1} d y=\frac{\pi}{4}\left|\frac{2}{3}(4 y+1)^{3 / 2}\right|_{1}^{4}=\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5}) .
$$

Example. Find the area of the surface that is generated by the portion of the curve $y=\sqrt{1-x^{2}}$ between $x=-1$ to $x=1$ about x-axis.
Solution. $\frac{d y}{d x}=\frac{-x}{\sqrt{1-x^{2}}}$

$$
S_{x-\mathrm{axix}}=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=2 \pi \int_{-1}^{1} \sqrt{1-x^{2}} \sqrt{1+\frac{x^{2}}{1-x^{2}}} d x=2 \pi \int_{-1}^{1} d x=4 \pi
$$

Problems. Find the area of the surface that is generated by the portion of the following curves:

1) $y=9 x+1$
$0 \leq x \leq 2$
about x-axis
2) $x=y^{3}$
$0 \leq y \leq 1 \quad$ about y-axis
3) $y=|x-1|$
$0 \leq x \leq 1 \quad$ about x-axis
4) $y=\frac{x^{4}}{16}+\frac{1}{x^{2}}$
$-3 \leq x \leq-1$
about x-axis
5) $y=\cosh x$
$0 \leq y \leq 1 \quad$ about y-axis
6) $y=e^{-x}$
$0 \leq x \leq 1 \quad$ about x-axis
