Length of curves

Definition. If $y=f(x)$ is a smooth curve on the interval $[a, b]$, then the arc length L of this curve over $[a, b]$ is defined as

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Moreover, for a curve expressed in form $x \in g(y)$ where g^{\prime} is continuous on $[a, b]$ the arc length L from $y=c$ to $y=d$ can be defined as

$$
L=\int_{c}^{d} \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y
$$

Example. Find the arc length of the curve $y=x^{3 / 2}$ from $(1,1)$ to $(2, \sqrt{2})$?
Solution. $y^{\prime}=\frac{3}{2} x^{1 / 2}$, then

$$
\begin{aligned}
L & =\int_{1}^{2} \sqrt{1+\left(\frac{3}{2} x^{1 / 2}\right)^{2}} d x=\int_{1}^{2} \sqrt{1+\frac{9}{4} x} d x \\
& =\frac{1}{2} \int_{1}^{2} \sqrt{4+9 x} d x=\left.\frac{1}{27}(4+9 x)^{3 / 2}\right|_{1} ^{2} \\
& =\frac{1}{27}\left((22)^{3 / 2}-(13)^{3 / 2}\right)=\frac{1}{27}(22 \sqrt{22}-13 \sqrt{13}) .
\end{aligned}
$$

Example. Find the arc length of the curve $y=\ln |\sec x|$ from $x=0$ to $x=\pi / 4$?
Solution. $y^{\prime}=\tan x$, then

$$
\begin{aligned}
L & =\int_{0}^{\pi / 4} \sqrt{1+\tan x^{2}} d x=\int_{0}^{\pi / 4} \sec x d x \\
& =\ln |\tan x+\sec x|_{0}^{\pi / 4}=\ln |1+\sqrt{2}| .
\end{aligned}
$$

Example. Find the arc length of the curve $y=3 x^{3 / 2}-1$, from $x=1$ to $x=4$?
Solution. Let $x=(y+1)^{2 / 3} \Rightarrow \frac{d x}{d y}=\frac{2}{3}(y+1)^{-1 / 3}$, then

$$
L=\int_{0}^{7} \sqrt{1+\frac{4}{9(y+1)^{2 / 3}}} d y
$$

Let $u=(y+1)^{2 / 3}$, then

$$
L=\int_{0}^{7} u \sqrt{4+9 u^{2}} d u=\frac{1}{27}\left|\left(4+9 u^{2}\right)^{3 / 2}\right|_{1}^{2}=7.63 .
$$

Problems. Find the arc length of the following curves:

1) $y=3 x^{3 / 2}-1$
from $x=0$ to $x=1$
2) $y=x^{2 / 3}$

$$
\text { from } x=1 \text { to } x=8
$$

3) $y=\ln |\sin x|$
4) $24 x y=y^{4}+48$
from $x=\pi / 4$ to $x=\pi / 2$
5) $y=\cosh x$
from $y=1$ to $y=4$
6) $y=e^{-x}$
$-1 \leq x \leq 1$
7) $y=x^{2}+x$
$-8 \leq x \leq-5$
$1 \leq x \leq 2$
