

FIGURE 1

A *Cylindrical shell* is a solid enclosed by two concentric right-circular cylinders. The volume V of Cylindrical shell having inner radius r_1 , outer radius r_2 and height h can be written as

$$\begin{split} V &= \pi r_2^2 h - \pi r_1^2 h \\ &= \pi (r_2^2 - r_1^2) h \\ &= \pi (r_2 + r_1) (r_2 - r_1) h \\ &= 2\pi \frac{r_2 + r_1}{2} h (r_2 - r_1) \\ &= 2\pi r h \Delta r \quad \text{where} \quad r = \frac{r_2 + r_1}{2} \quad \text{and} \quad \Delta r = r_2 - r_1 \end{split}$$

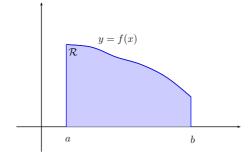


FIGURE 2

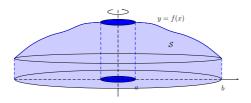
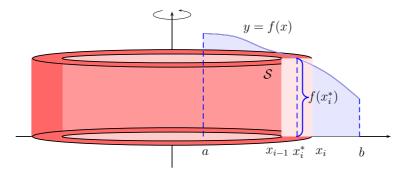


Figure 3



Let S be the solid obtained by rotating about the y-axis the region bounded by y = f(x), y = 0, x = a, and x = b. We partition the interval [a, b] into n subinterval $a = x_0 < x_1 < ... < x_n = b$ with equal length Δx . Let x_i^* be the midpoint of $[x_{i-1}, x_i]$. If the rectangle with base $[x_{i-1}, x_i]$ and height $f(x_i^*)$ is rotated about the y-axis we get a cylindrical shell with average radius x_i^* , height $f(x_i^*)$ and thickness $\Delta x_i = \Delta x$. Then its volume is $V_i = 2\pi x_i^* f(x_i^*) \Delta x$ and

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} 2\pi x_i^* f(x_i^*) \Delta x = \int_{a}^{b} 2\pi x f(x) \, dx$$

Definition 0.1. Let S be the solid obtained by revolved the region y = f(x), y = 0, x = a, x = b. about the y-axis .Then the volume of is

$$V = \int_{a}^{b} 2\pi x f(x) \, dx$$

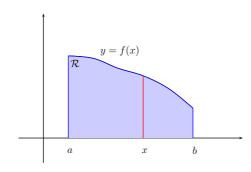


Figure 5

Note 0.1. At any x in the interval [a, b], the vertical line segment from the x-axis to the graph of y = f(x) can be viewed as a cross-section of the region \mathcal{R} at x. (see figure 5 and 6) When the region \mathcal{R} is revolved about y-axis, the cross-section at x generates the surface of a right-circular cylinder of hight f(x)

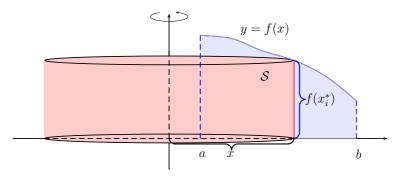
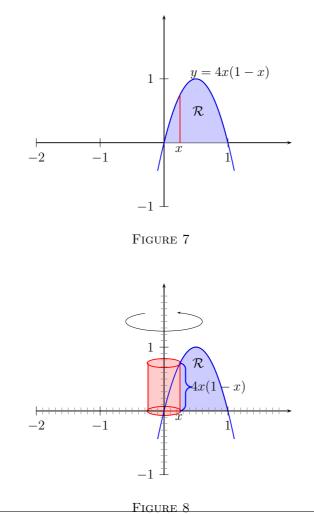


FIGURE 6

and radius x. The area of this surface is $2\pi x f(x)$. So we can say that the volume by cylindrical shell is the integral of the surface area generated by any arbitrary cross-section of \mathcal{R} taken parallel to rotation axis.

$$V = \int_{a}^{b} 2\pi x f(x) \, dx$$

Example 0.1. find the volume of the solid obtained by rotating the region y = 4x(1-x) and y = 0 about the y-axis



Solution: Since we will take a cross-section parallel to the y-axis, we will integrate with respect to x. By solving the equation 4x(1-x) = 0, we get x = 0, x = 1. At each $x \in [0, 1]$, the cross-section of the region \mathcal{R} parallel to y-axis generates a cylindrical surface of hight 4x(1-x) and radius x. Since the area of the surface is $2\pi x 4x(1-x)$, the volume of the solid is

$$V = \int_{a}^{b} 2\pi x f(x) dx$$

= $\int_{0}^{1} 8\pi x^{2}(1-x) dx$
= $\int_{0}^{1} 8\pi x^{2}(1-x) dx$
= $\int_{0}^{1} 8\pi x^{2} - x^{3} dx$
= $8\pi \left[\frac{1}{3}x^{3} - \frac{1}{4}x^{4}\right]_{0}^{1}$
= $8\pi \left[\frac{1}{3} - \frac{1}{4}\right]$
= $8\pi \frac{1}{12}$
= $\frac{2\pi}{3}$.

Example 0.2. find the volume of the solid obtained by rotating the region $y = \sqrt{x}$, y = 0, and x = 2 about the x-axis

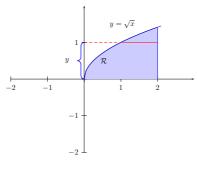


FIGURE 9

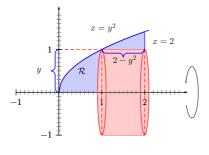


FIGURE 10

Solution: Since we will take a cross-section parallel to the x-axis, we will integrate with respect to y. Since x moves from x = 0 to x = 2, then y moves from y = 0 to $y = \sqrt{2}$. At each $y \in [0, \sqrt{2}]$, the cross-section of the region \mathcal{R} parallel to x-axis generates a cylindrical surface of hight $2 - y^2$ and radius y. Since the area of the surface is $2\pi y(2 - y^2)$, the volume of the solid is

$$V = \int_{a}^{b} 2\pi y f(y) \, dy$$

= $\int_{0}^{\sqrt{2}} 2\pi y (2 - y^2) \, dy$
= $\int_{0}^{\sqrt{2}} 2\pi (2y - y^3) \, dy$
= $2\pi \left[2\frac{1}{2}y^2 - \frac{1}{4}y^4 \right]_{0}^{\sqrt{2}}$
= $2\pi \left[2 - \frac{1}{4}.4 \right]$

 $=2\pi$.

Exercises 0.1. In Exercises 1 - 10 find the volume of the solid obtained by rotating the region bounded by the given curves about the given axis. Sketch the region, the solid, and a typical shell.

- (1) $y = x^2$, y = 0, x = 1, x = 2, about the y-axis
- (2) $y = x^2$, y = 4, x = 0, x = 2, about the y-axis
- (3) x + y = 1, x = 0, y = 0, about the x-axis
- (4) $x = y y^2$, x = 0, about the x-axis
- (5) $y = 2x x^2$, y = 0, x = 0, x = 1, about the y-axis
- (6) y = x, y = 2 x, x = 0, about the x-axis
- (7) y = x 2, $y = \sqrt{x 2}$, about the y-axis
- (8) $y = \sqrt{x-1}, y = 0, x = 5, about the y-axis$
- (9) $y = \cos xx = 0$, $x = \frac{\pi}{4}$, about the x-axis
- (10) $y = \frac{-1}{x}$, y = 0, x = 1, y = 3, about the x-axis