VOLUMES BY CYLINDRICAL SHELLS

Figure 1

A Cylindrical shell is a solid enclosed by two concentric right-circular cylinders. The volume V of Cylindrical shell having inner radius r_{1}, outer radius r_{2} and height h can be written as

$$
\begin{aligned}
V & =\pi r_{2}^{2} h-\pi r_{1}^{2} h \\
& =\pi\left(r_{2}^{2}-r_{1}^{2}\right) h \\
& =\pi\left(r_{2}+r_{1}\right)\left(r_{2}-r_{1}\right) h \\
& =2 \pi \frac{r_{2}+r_{1}}{2} h\left(r_{2}-r_{1}\right) \\
& =2 \pi r h \Delta r \quad \text { where } \quad r=\frac{r_{2}+r_{1}}{2} \text { and } \quad \Delta r=r_{2}-r_{1}
\end{aligned}
$$

Figure 2

Figure 3

Figure 4
Let S be the solid obtained by rotating about the y-axis the region bounded by $y=f(x), y=0, x=a$, and $x=b$. We partition the interval $[a, b]$ into n subinterval $a=x_{0}<x_{1}<\ldots<x_{n}=b$ with equal length $\triangle x$. Let x_{i}^{*} be the midpoint of $\left[x_{i-1}, x_{i}\right]$. If the rectangle with base $\left[x_{i-1}, x_{i}\right]$ and height $f\left(x_{i}^{*}\right)$ is rotated about the y-axis we get a cylindrical shell with average radius x_{i}^{*}, height $f\left(x_{i}^{*}\right)$ and thickness $\triangle x_{i}=\triangle x$. Then its volume is $V_{i}=2 \pi x_{i}^{*} f\left(x_{i}^{*}\right) \Delta x$ and

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi x_{i}^{*} f\left(x_{i}^{*}\right) \Delta x=\int_{a}^{b} 2 \pi x f(x) d x
$$

Definition 0.1. Let S be the solid obtained by revolved the region $y=f(x), y=0, x=a, x=b$. about the y-axis. Then the volume of is

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

Figure 5
Note 0.1. At any x in the interval $[a, b]$, the vertical line segment from the x-axis to the graph of $y=f(x)$ can be viewed as a cross-section of the region \mathcal{R} at x.(see figure 5 and 6) When the region \mathcal{R} is revolved about y-axis, the cross-section at x generates the surface of a right-circular cylinder of hight $f(x)$

Figure 6
and radius x. The area of this surface is $2 \pi x f(x)$. So we can say that the volume by cylindrical shell is the integral of the surface area generated by any arbitrary cross-section of \mathcal{R} taken parallel to rotation axis.

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

Example 0.1. find the volume of the solid obtained by rotating the region $y=4 x(1-x)$ and $y=0$ about the y-axis

Figure 7

Solution: Since we will take a cross-section parallel to the y-axis, we will integrate with respect to x. By solving the equation $4 x(1-x)=0$, we get $x=0, x=1$. At each $x \in[0,1]$, the cross-section of the region \mathcal{R} parallel to y-axis generates a cylindrical surface of hight $4 x(1-x)$ and radius x. Since the area of the surface is $2 \pi x 4 x(1-x)$, the volume of the solid is

$$
\begin{aligned}
V & =\int_{a}^{b} 2 \pi x f(x) d x \\
& =\int_{0}^{1} 8 \pi x^{2}(1-x) d x \\
& =\int_{0}^{1} 8 \pi x^{2}(1-x) d x \\
& =\int_{0}^{1} 8 \pi x^{2}-x^{3} d x \\
& =8 \pi\left[\frac{1}{3} x^{3}-\frac{1}{4} x^{4}\right]_{0}^{1} \\
& =8 \pi\left[\frac{1}{3}-\frac{1}{4}\right] \\
& =8 \pi \frac{1}{12} \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

Example 0.2. find the volume of the solid obtained by rotating the region $y=\sqrt{x}, y=0$, and $x=2$ about the x-axis

Figure 9

Figure 10

Solution: Since we will take a cross-section parallel to the x-axis, we will integrate with respect to y. Since x moves from $x=0$ to $x=2$, then y moves from $y=0$ to $y=\sqrt{2}$. At each $y \in[0, \sqrt{2}]$, the cross-section of the region \mathcal{R} parallel to x-axis generates a cylindrical surface of hight $2-y^{2}$ and radius y. Since the area of the surface is $2 \pi y\left(2-y^{2}\right)$, the volume of the solid is

$$
\begin{aligned}
V & =\int_{a}^{b} 2 \pi y f(y) d y \\
& =\int_{0}^{\sqrt{2}} 2 \pi y\left(2-y^{2}\right) d y \\
& =\int_{0}^{\sqrt{2}} 2 \pi\left(2 y-y^{3}\right) d y \\
& =2 \pi\left[2 \frac{1}{2} y^{2}-\frac{1}{4} y^{4}\right]_{0}^{\sqrt{2}} \\
& =2 \pi\left[2-\frac{1}{4} \cdot 4\right] \\
& =2 \pi
\end{aligned}
$$

Exercises 0.1. In Exercises $1-10$ find the volume of the solid obtained by rotating the region bounded by the given curves about the given axis. Sketch the region, the solid, and a typical shell.
(1) $y=x^{2}, y=0, x=1, x=2$, about the y-axis
(2) $y=x^{2}, y=4, x=0, x=2$, about the y-axis
(3) $x+y=1, x=0, y=0$, about the $x-a x i s$
(4) $x=y-y^{2}, x=0$, about the $x-a x i s$
(5) $y=2 x-x^{2}, y=0, x=0, x=1$, about the y-axis
(6) $y=x, y=2-x, x=0$, about the x-axis
(7) $y=x-2, y=\sqrt{x-2}$, about the y-axis
(8) $y=\sqrt{x-1}, y=0, x=5$, about the y-axis
(9) $y=\cos x x=0, x=\frac{\pi}{4}$, about the x-axis
(10) $y=\frac{-1}{x}, y=0, x=1, y=3$, about the x-axis

