## $4:)^{12}$ <br> KAU



## Exam IV

Hamed Al-Sulami
أنقر على Start لبلداء الاختبـار.
يحتوي هلا الأختبـار على عشروز سؤ الاًا
عند الانتهاء من الاختبـار أنقر على End للحصو ل على
النتيجة.
بـالتو فيق إن شاء الله.
(C) 2008

January 2, 2008
hhaalsalmi@kau.edu.sa
Version 1.0


Enter Name:

I.D. Number:


Start Answer each of the following. Passing is $100 \%$.

1. The sequence $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$ is
 Increasing Not bounded


Not monotone Decreasing
2. The series $\sum_{n=0}^{\infty} \frac{\ln n}{n^{3}}$ is

$\square$
Diverges by Comparison $\square$ Diverges by Integral Test Test
$\square$ Converges by
$\square$ Converges by Ratio Test Comparison Test
3. The series $\sum_{n=0}^{\infty} \frac{\sqrt{n}}{\ln n}$ is

$\square$
Converges by
Comparison Test
$\square$ Converges by Integral Test
$\square$ Converges by Ratio Test
$\square$ Diverges by Comparison Test
4. The series $\sum_{n=1}^{\infty} \frac{10}{n(n+1)}$ is

BDivergent
Convergent to 0
$\square$ Convergent to -10
5. The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{n+1}$

$R=\infty$
$R=4$

$\square$| $R=3$ |
| :--- |
| $R=1$ |

6. The sequence $\{-1,0,1,-1,0,1,-1,0,1, \ldots\}$ is

$\square$
Convergent to 0
Divergent
$\square$ Convergent to 1
7. The sequence $\left\{\left(\frac{1}{n}\right)^{1 / \ln n}\right\}_{n=1}^{\infty}$ is


Divergent
Convergent to $e$
Convergent to 1 Convergent to -1
8. The series $\sum_{n=0}^{\infty} \frac{\sin n}{3^{n}}$ is

$\square$
Diverges
Conditionally
Absolutely Convergent

Convergent
9. The series $\sum_{n=0}^{\infty} \frac{n 2^{n}}{3^{n}}$ is
$\square$ Diverges by Comparison $\square$ Converges by Integral Test Test
$\square$ Diverges by Comparison $\square$ Converges by Ratio Test Test
10. The series $\sum_{n=0}^{\infty} \frac{n 2^{n}}{3^{n}}$ is
$\square$ Diverges by Comparison $\square$ Diverges by Root Test
Test
$\square$ Converges by Integral $\square$ Converges by Root Test Test
11. The sequence $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$ is

$\square$
Not monotone
Divergent


Not bounded
Bounded
12. The interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{n+1}$ is
$\square[2,4]$

13. The series $\sum_{n=0}^{\infty} \frac{n+2}{3 n-1}$ is
$\square$ Converges by Integral
Test
Converges by
$\square$ Diverges by Divergence Test
$\square$ Diverges by Ratio Test
14. The Taylor series for $f(x)=\ln x$ at $a=2$ is

15. The sequence $\left\{\frac{(-1)^{n} n}{n+1}\right\}_{n=1}^{\infty}$ is
$\begin{array}{ll}\square & \text { Convergent to }-1 \\ \text { Convergent to } 0\end{array} \quad \square$ Convergent to 1
16. The sum of the series $\sum_{n=0}^{\infty} \frac{\cos (n \pi)}{3^{n}}$ is

$$
\begin{array}{|}
\square \frac{-1}{3} \\
\square \frac{-3}{4}
\end{array}
$$

17. $\lim _{n \rightarrow \infty} \tanh n=$

18. The sum of the series $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$ is

19. The series $\sum_{n=0}^{\infty} \frac{2^{n}+3^{n}}{5^{n}+2}$ is


Converges by Integral
$\square$ Converges by Test Comparison Test
$\square$ Diverges by Comparison $\square$ Converges by Ratio Test Test
20. The power series for $f(x)=\sin ^{2} x$ is

$$
\begin{aligned}
& \square \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2^{2 n-1} x^{2 n}}{(2 n)!} \quad \square 1+\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{2 n-1} x^{2 n+1}}{(2 n+1)!} \\
& \square 1+\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n-1} x^{2 n+1}}{(2 n+1)!} \square \sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{2 n-1} x^{2 n}}{(2 n)!}
\end{aligned}
$$

## End

Score:
Correct

Answers: $\square$
Points: $\square$ Percent: $\square$
Letter Grade: $\square$

