Thesis outline

Introduction .1
General introduction .1.1
Regional setting .1.2
Previous work .1.3
Geography .1.4
Topography .1.5
Climatology and oceanography .1.6
Study Area .1.7
Aim of study .1.8

Methods of study .2
Field observation .2.1
Laboratory methods .2.2
Petrography .2.2.1
Thin section and peels .2.2.2
Radiogenic analysis .2.2.3
Stable isotope analysis .2.2.4
Textural analysis .2.2.5
Scanning Electron Microscope (SEM) .2.2.6
X-ray Diffraction (XRD) .2.2.7
Computer analysis (Processing images data) .2.2.8

The Red Sea .3
North Red Sea .3.1
Middle Red Sea .3.2
Southern Red Sea .3.3
Climatology and oceanography .3.4
The sedimentary evolution of the Saudi Arabia Coast

4.1 Pre-Rift sequences.
4.2 Syn-Rift sequences.
4.3 Quaternary sequences.

Digital Image processing Techniques

5.1 How data are collected
5.2 Digital images
5.3 Digital image processing procedures
5.4 Image rectification
5.5 Image enhancement of TM bands
 Bands 321
 Bands 457

The geological setting of the Farasan Islands

6.1 Farasna Bank formation
6.2 Geologic feature of the Farasan Bank
6.3 Water Depth Mapping Using Landsat TM images
6.4 Gravity and Magnetic

Stratigraphy of The Farasan Islands

7.1 Wells Stratigraph
7.2 Outcropping Stratigraphy
7.3 Facies, petrology, and composition of the reef carbonate rocks, and sediments.
7.4 Dating of the Farasan Island Limestones
7.5 Sediment, and rocks distribution
7.6 Sedimentological evolution and correlation
 Dahlak Islands (Southwest the Red Sea)
 Kamaran Island
 Salif area
Digital image processing

Discussion and conclusion .13.1
Electromagnetic radiation and materials. .13.2
Human vision. .13.3
How data are collected. .13.4
Geological application of image data. .13.5
Landsat Images. .13.6
Image correction .13.7
Geometric rectification .13.8
Replacing dropped lines .13.9
Destriping .13.10
Removal of random noise .13.11
The image histogram .13.12
Contrast stretching .13.13
Spatial frequency filtering .13.14
Band RATIOING .13.15
Pattern recognition .13.16
Previous Work

Farasan Al Kabir and Sajid islands were visited three times between 1995-1996. During the field work about 33 shell samples were collected for dating. 20 loss sediment from different area were collected grain size analysis. Attitude, dip and strike of more then 40 faults from five areas were measured for structural map. ten exposure outcrops were logged and identified for lithology stratigraphy.

44 thin section were exam under microscope for description standard microfacies, and facies zone.

15 loss sediments were grained size analysis to determinate the textural characteristic of the sediments.

34 Mollusc shells were peeled and examined under microscope to determinate the diagnosis, and recognise different microstructure of shells, and select the area to collect the samples for stable isotope.

Stable isotope analysis was used to determinate the value of oxygen and carbon concentration in the shells to find the environmental deposition, and to select the sample for strontium isotope.

Prepared 34 samples for radiogenic analysis for dating.

Logged seven wells drilled by MidelEast and British company from different area on Farasan Al Kabir and Sajid Islands.

Produced a geology map, bathmetric map, and location of salt dome area.

Produced the geological, Bathymetric, Structural, and Sediment distribution maps of Farasan Islands using Landsat5 data.

Wrote four reports,
First fieldwork Report

Outline geology of the Farasan Islands

Future work

1. Using ERMAPPER for image processing for resolution, scale problem.
2. Prepare 43 samples for XRD analysis.
3. Using radiogenic lab for Strontium isotope analysis.
4. Writing three reports:
 - The Red Sea evolution
 - Using remote sensing in geology
 - Processing image data