المعادلات

المعادلة عبارة عن تركيبة جبرية تتكون من مجهول واحد أو أكثر ومقدار ثابتة وعلامة المساواة.

فمثلا المقدار 7 + 3x² - 4x + 7 = 0 لا يعتبر معادلة لعدم وجود علامة المساواة ولكن كل من الألتي يعتبر معادلة 3x² - 4x + 7 = 0.

4xy - 7x + 6y = x + 9y - 89

حل المعادلة مماثلاً لحل المعادلة الذي تحقق المعادلة. أي القيم التي إذا عوضنا بها في المعادلة لوجدنا أن الطرف الأيمن سيساوي الطرف الأيسر.

أنواع المعادلات كثيرة جداً وسنراجع هنا نوعين اثنين فقط:

أولاً: المعادلات الخطية من مجهول واحد

\[x = \frac{-b}{a} \]

حل هذا النوع هو شكله العام. بحيث أن \(a \neq 0 \).

مثال: حل المعادلة 0 = 16 - 4x.

 الحل:

\[4x - 16 = 0 \]

\[\Rightarrow 4x = 16 \]

\[\Rightarrow x = \frac{16}{4} = 4 \]

التمرين: حل المعادلات التالية:

\[2x + 7 = -13 \]

\[5y + 18 + 3y = 9 \]

ثانياً: معادلات الدراجة الثانية من مجهول واحد

\[a \neq 0 \] بحيث أن \(a, b, c \) أعداد حقية و صورتها العامة

\[ax^2 + bx + c = 0 \]

مثال: حدد قيمة \(a, b, c \) في المعادلة 9 - 4x في المعادلة 2x² - 3x + 4 = 5x² + 4x - 9.

الحل: نكتب المعادلة على الصيغة الصفرية (الصورة العامة)،

\[2x^2 - 3x + 4 = 5x^2 + 4x - 9 \]

\[\Rightarrow 2x^2 - 3x + 4 - 5x^2 - 4x + 9 = 0 \]

\[\Rightarrow -3x^2 - 7x + 13 = 0 \]

\[\Rightarrow a = -3, b = -7, c = 13. \]
هناك عدة طرق لحل هذا النوع من المعادلات

$$\frac{-c}{a} \geq 0 \quad \text{بشرط أن} \quad x = \pm \sqrt{\frac{-c}{a}}$$
ولحلها هو $ax^2 + c = 0$، إذا كان $b = 0$

$3x^2 = 27$
$\Rightarrow x^2 = 9$
$\Rightarrow x = \pm 3.$

$3x^2 - 27 = 0$
$\Rightarrow 3x^2 = 27$
$\Rightarrow x^2 = \frac{27}{3} = 9$
$\Rightarrow x = \pm \sqrt{9} = \pm 3.$

$\Rightarrow x = \pm 3.$

$2x^2 - x = 0$
$\Rightarrow x(2x-1) = 0$
$\Rightarrow x = 0 \quad \text{or} \quad 2x-1 = 0$
$\Rightarrow x = 0 \quad \text{or} \quad x = \frac{1}{2}.$

$2x^2 + 5x - 3 = 0$
$\Rightarrow (2x-1)(x+3) = 0$
$\Rightarrow 2x-1 = 0 \quad \text{or} \quad x+3 = 0$
$\Rightarrow x = \frac{1}{2} \quad \text{or} \quad x = -3.$

$\Rightarrow x = \pm 3.$

$2x^2 + 5x - 3 = 0$
$\Rightarrow (2x-1)(x+3) = 0$
$\Rightarrow 2x-1 = 0 \quad \text{or} \quad x+3 = 0$
$\Rightarrow x = \frac{1}{2} \quad \text{or} \quad x = -3.$
القانون العام

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

يمثل المميز لأنه يميز الحل كالآتي:

- إذا كان \(b^2 - 4ac < 0 \) فلا يوجد حل ينتمي لمجموعة الأعداد الحقيقية.
- إذا كان \(b^2 - 4ac = 0 \) يوجد حل واحد فقط وهو \(x = \frac{-b}{2a} \).
- إذا كان \(b^2 - 4ac > 0 \) يوجد حلان مختلفان وهما اللذان في القانون العام.

مثال: حل المعادلة \(2x^2 + 5x - 3 = 0 \)

المحل: نجد أن \(a = 2, b = 5, c = -3 \)

\[b^2 - 4ac = (5)^2 - (4)(2)(-3) = 49 \]

بتطبيق القانون العام نجد أن

\[x_1 = \frac{-5 + \sqrt{49}}{2(2)} = \frac{-5 + 7}{4} = \frac{2}{4} = \frac{1}{2} \] \quad و \quad \[x_2 = \frac{-5 - \sqrt{49}}{2(2)} = \frac{-5 - 7}{4} = \frac{-12}{4} = -3 \]

5. طريقة إكمال المربع

مثال: حل المعادلة \(2x^2 - 8x - 6 = 0 \)

بقسمة طرفي المعادلة على 2 نحصل على المعادلة المربعة

\[x^2 - 4x - 3 = 0 \]

بإضافة مربع نصف معامل المجهول الذي أسه واحد للطرفين

\[(x - 2)^2 = 7 \Rightarrow x - 2 = \pm \sqrt{7} \Rightarrow x = 2 \pm \sqrt{7}. \]

تمرين: حل المعادلات الآتية:

1. \(x^2 + x - 12 = 0 \)
2. \(x^2 - 2x - 35 = 0 \)
3. \(4x^2 - 64 = 0 \)
4. \(2x^2 - 4x = 0 \)
5. \(2x^2 - 3x - 15 = 0 \)
6. \(x^3 + 5x^2 - 24x = 0 \)