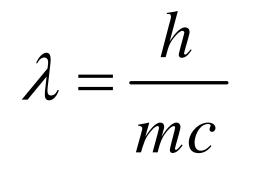


Einstein: momentum of a photon

$$p = \frac{h}{\lambda}$$



from: $\lambda v = c$ and E = hv

use Einstein's relativity result $E = mc^2$

Note that *m* refers to the relativistic mass, not the rest mass

Wave-Particle Duality

1924 de Broglie: matter also can exhibit this *wave-particle duality*

h $\lambda = - \frac{1}{mV}$

1927, Davisson and Germer: observed diffraction patterns by bombarding metals with electrons, confirming de Broglie's proposition

de Broglie's equation offers a justification for Bohr's assumption

If we think of an electron as a wave, then for the electron orbit to be stable the wave must complete an integral number of wavelengths during its orbit. Otherwise, it would interfere destructively with itself.

This condition may be written as

$2\pi r = n\lambda$

$mvr = n\hbar$

which is identical to Bohr's equation

Heisenberg: the wave-particle duality leads to the famous uncertainty principle

 $\Delta x \Delta p \approx h$

One result of the uncertainty principle: if the orbital radius of an electron in an atom (*r*) is known exactly, then the angular momentum must be completely unknown.

Example:

Calculate the uncertainty in the position of a baseball thrown at 40 m/s if we measure its velocity to a millionth of 1%.

$$= 0.14kg$$

$$P = mv = 0.14kg \times 40ms^{-1}$$

$$= 5.6kgms^{-1}$$

a millionth of 1%

$= 5.6 \times 10^{-8} kgms^{-1}$

 6.626×10^{-34} Js h $\frac{d}{\Delta p} = \frac{1}{5.6 \times 10^{-8} kgms^{-1}}$

$= 1.2 \times 10^{-26} m$

Example: What is the uncertainty in momentum if we wish to locate an electron within an atom, say, so that Δx is approximately is 50pm?

 $\frac{h}{\Delta x} = \frac{6.626 \times 10^{-34} Js}{50 \times 10^{-12} m}$

$= 1.3 \times 10^{-23} kgms^{-1}$

P = mV ΔP corresponds to $\Delta v = \frac{\Delta P}{m} = \frac{1.3 \times 10^{-23} kgms^{-1}}{9.11 \times 10^{-31} kg}$

$= 1.4 \times 10^7 ms^{-1}$