Chapter 10 Vapor/Liquid Equilibrium

- Previous chapters dealt with pure substances or with constant composition mixtures (air).
- But in chemical reactions and number of industrially mass-transfer operations the composition changes are the desired outcome. (Process such as distillation, absorption and extraction bring phases of different composition into contact).
- In such process. The extent of phase change and the rate of mass transfer depend on the departure of the system from the equilibrium.
- For quantitative treatment of mass transfer the equilibrium $\boldsymbol{T}, \boldsymbol{P}$ and phase composition must be known.
- Two simple formulations that allow calculation of T, P and phase compositions for systems in vapor/liquid systems:
- Raoult's Law: Valid for systems at low to moderate pressure and systems of chemically similar species.
- Henery's Law: Any species present at low concentration. Limited to low to moderate pressure.
- A modification of Raoult's law (removes the restriction of chemically similar species) is treated in section 10.5 .
- Finally, in section 10.6, calculations based on equilibrium ratio of K-values are considered.

10.4 Simple Models for a Vapor/Liquid Equilibrium

- The goal is to find by calculation the T, P and compositions of phases in equilibrium.
- Raoult's Law:

Two major assumptions:

- The vapor phase is an ideal gas.
- The liquid phase is an ideal solution (11.8).
- It means:
- Raoult's law can apply only for low to moderate pressures.
- Raoult's law can apply only when the species that comprise the system are chemically similar.
- Ideal solution: Approximated by liquid phases where molecular species are not too different in size and are of the same chemical nature.

Example: Mixture of isomers such as ortho-, meta-, para- xylene.
Or adjacent members of homologues series: n-hexane/n-heptane
Ethanol/propanol
Benzene/toluene.

- Mathematical Expression:

$$
\begin{equation*}
\mathbf{y}_{\mathbf{i}} \mathbf{P}=\mathbf{x}_{\mathbf{i}} \mathbf{P}_{\mathbf{i}}^{\text {sat }} \quad(\mathrm{i}=1,2, \ldots, \mathrm{~N}) \tag{10.1}
\end{equation*}
$$

Where:

$$
\mathrm{y}_{\mathrm{i}}=\text { Vapor-phase mole fraction. }
$$

$\mathrm{x}_{\mathrm{i}}=$ Liquid-phase mole fraction.
$\mathrm{P}_{\mathrm{i}}=$ Vapor pressure of pure species i at the T of the system.
$y_{i} P=$ Partial pressure of species i.

- Limitation: It can be applied only to a species for which vapor pressure is known.
- Vapor pressure given by empirical equations such as Antoine equation, where T is required.
This requires that the species "sub-critical" i.e. that the temperature of application be below the critical temperature of the species.
- Dew point and bubble point calculations with Raoult's law:
- Bubl P: Calculate $\mathbf{y}_{\mathbf{i}}$ and \mathbf{P}, \quad given x_{i} and T.
- Dew P: Calculate $\mathbf{x}_{\mathbf{i}}$ and \mathbf{P}, \quad given y_{i} and T.
- Bubl T: Calculate $\mathbf{y}_{\mathbf{i}}$ and T, given x_{i} and P.
- Dew T: Calculate $\mathbf{x}_{\mathbf{i}}$ and T, given y_{i} and P.
- Bubble point: First bubble forms.
- Dew point: Liquid droplet remains.
- General procedure:

$$
\sum y_{i}=1
$$

Then equation 10.1 becomes

$$
\begin{equation*}
\mathrm{P}=\sum \mathrm{x}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}^{\text {sat }} \tag{10.2}
\end{equation*}
$$

Applied for Bubble point calculations where the vapor phase compositions are unknown.

For a binary system with

$$
\begin{aligned}
& \mathrm{X}_{2}=1-\mathrm{X}_{1} \\
& \mathrm{P}=\mathrm{P}_{2}^{\text {sat }}+\left(\mathrm{P}_{1}^{\text {sat }}-\mathrm{P}_{2}^{\text {sat }}\right) \mathrm{x}_{1}
\end{aligned}
$$

Also 10.1 may be solved for x_{i} with $\quad \sum \mathrm{x}_{\mathrm{i}}=1$

$$
\begin{equation*}
\mathrm{P}=1 / \sum \mathrm{y}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}^{\text {sat }} \tag{10.3}
\end{equation*}
$$

Applied for Dew point calculations where liquid phase compositions are unknown.

Ex.10.1

Figure 10.11: $P x y$
diagram for acetonitrile(1)/nitromethane(2) at $75^{\circ} \mathrm{C}$ as given by Raoult's law.

$$
\begin{array}{ll}
\mathbf{P}-\mathbf{x}_{1}: & \text { Sat'd liquid. } \\
\mathbf{P}-\mathbf{y}_{1}: & \text { Sat'd vapor. }
\end{array}
$$

Above $P-x_{1}$: Sub cooled liquid.
Below P-y ${ }_{1}$: Superheated vapor.
Between P- $\mathrm{x}_{1} \& P-\mathrm{y}_{1}$ two phase region.
Lines meet at edges of the diagram: $\mathbf{P}_{1}{ }^{\text {sat }}$ and $\mathbf{P}_{\mathbf{2}}{ }^{\text {sat }}$.

- Point a: sub cooled liquid mixture $60 \mathrm{~mol} \%$ \& $40 \mathrm{~mol} \%$ at $75^{\circ} \mathrm{C}$.
- Reduce pressure slowly so that system is always in equilibrium until point b.
- Point b: Sat'd liquid on the edge of vaporization.
- Further reduce the pressure till point b^{-}, bubble of vapor appears.
- Points b and b^{-}are the equilibrium state $@ x_{1}=0.6, P=66.72$, and $y_{1}=$ 0.7483 (as we did calculated)
- Point b is a bubble point, $P-x_{1}$ line is the locus of bubble points.
- As pressure reduced, vapor increase and liquid decrease following the two paths $b^{-} \mathbf{c}$ and bc-.
- Finally, approach point C where only a droplet of liquid remains. C is a dew point, $P-y_{1}$ line is the locus of dew points.
- Point c- read from the graph or calculated.

DEW P calculation: Calculate $\mathbf{x}_{\mathbf{i}}$ and \mathbf{P}, \quad given y_{i} and T $\mathrm{T}=\mathbf{7 5}^{\circ} \mathrm{c}, \mathrm{y}_{1}=\mathbf{0 . 6}$

Find x_{1} and P.

Constant pressure heating process:

- Point a: Sub cooled liq. of a composition of $\mathbf{6 0 \%}$ acetonitrite.
- Temp. increase as a result of heating from a to b.
- Point b: first bubble of vapor appears. Bubble point. $t-x_{1}$ is the locus of bubble points.

Bubl T calculation: Calculate $\mathbf{y}_{\mathbf{i}}$ and \mathbf{T}, \quad given x_{i} and P.
$P=70 \mathrm{kpa}, \mathrm{x}_{1}=0.6 \quad$ Find y_{1} and P . \{Iteration $\}$

- From eq. (10.2) write $\quad \mathbf{P}=\mathbf{P}_{2}{ }^{\text {sat }}\left(\mathbf{x}_{1}\left(\mathbf{P}_{1}{ }^{\text {sat }} / \mathbf{P}_{2}{ }^{\text {sat }}\right)+\mathbf{x}_{2}\right) \quad \underline{A}$
- Solve for $P_{2}{ }^{\text {sat }}$, defining $\alpha=P_{1}{ }^{\text {sat }} / \mathbf{P}_{2}{ }^{\text {sat }}$
$-\quad \mathbf{P}_{2}{ }^{\text {sat }}=\mathbf{P} / \mathbf{x}_{1} \alpha+\mathbf{x}_{2}$
$-\quad \ln \alpha=\ln \left(P_{1}{ }^{\text {sat }} / P_{2}{ }^{\text {sat }}\right) \quad\left(=\ln P_{1}{ }^{\text {sat }}-P_{2}{ }^{\text {sat }}\right)$
- From Antoine equation $\ln \alpha=0.0681-2,945.47 / t+224+2,972.64 / 209 \quad \underline{C}$
- α is a weak function of t.

Iteration procedure:
1- Calculate $P_{2}{ }^{\text {sat }}$ from equation \underline{B} with the current value of α. (From part a @ $75^{\circ} \mathrm{c}$.
2- Calculate \mathbf{t} from Antoine equation for species 2:

$$
t=2,972.64 /\left(14.2043-\ln P_{2}{ }^{\text {sat }}\right)-209
$$

3- Find a new value of a by equation \underline{C}.
4- Return to the initial step and iterate to converge for final value of t.
The result is $t=76.42^{\circ} c$ (Temp. of points b and b^{-}).
From Antoine equation $P_{1}{ }^{\text {sat }}=87.17 \mathrm{kpa}$.
From 10.1 b $^{-}$composition:

$$
y_{1}=x_{1} P_{1}{ }^{\text {sat }} / P=0.6 * 87.17 / 70=0.7472
$$

> Vaporizing a mixture at constant P, unlike vaporizing a pure species DOES NOT occur at constant temperature.

As heating continue beyond b, temp raises and the amount of vapor increases. During this process, vapor and liquid compositions change as in path b^{-c} and bc^{-}.

- Dew point is reached at \mathbf{c} where last droplet of liquid disappears (Dew point), $t-y_{1}$ is locus of dew points.

Dew T calculation: Calculate $\mathbf{x}_{\mathbf{i}}$ and \mathbf{T}, given y_{i} and P.
$\mathrm{P}=70 \mathrm{kpa}, \mathrm{y}_{1}=0.6$
Find x_{1} and T. $\{\underline{\text { Iteration }\}}$

$$
\begin{aligned}
& \alpha=\mathbf{P}_{1}{ }^{\text {sat }} / \mathbf{P}_{2}{ }^{\text {sat }} \\
& \mathbf{P}_{1}{ }^{\text {sat }}=\mathbf{P}\left(\mathbf{y}_{1}+\mathbf{y}_{2} \alpha\right)
\end{aligned}
$$

Same iteration procedure as before but based on $P_{1}{ }^{\text {sat }}$ instead of $\mathbf{P}_{1}{ }^{\text {sat }}$ with

$$
t=2,972.64 /\left(14.2424-\ln P_{1}{ }^{\text {sat }}\right)-224
$$

The result is $t=79.58^{\circ} \mathbf{c}$ (Temp. of points c and c^{-}).
From Antoine equation $P_{1}{ }^{\text {sat }}=96.53 \mathrm{kpa}$.
From $10.1 \mathrm{~b}^{-}$composition:

$$
x_{1}=y_{1} P / P_{1}{ }^{\text {sat }}=0.6 * 70 / 96.53=0.4351
$$

Temperature raises from $76.42^{\circ} \mathrm{c}$ to $\mathbf{7 9 . 5 8}{ }^{\mathbf{o}} \mathrm{c}$ during the vaporization step from point b to c.
Continue heating to super heated at point d.

- Henry's Law:

- Raoult's law requires $\mathbf{P}_{\mathbf{i}}^{\text {sat }}$ value at application temperature.
- For species whose critical T is less than the application temperature, this is not appropriate.
- For example, air dissolved in water at equilibrium.
(Air $\mathrm{T}_{\mathrm{C}}=132.2^{\circ} \mathrm{K}=-140.95^{\circ} \mathrm{C}$ is much lower than $25^{\circ} \mathrm{C}$).
- Use Henry's law for dilute solute in the liquid phase (liq. Mole fraction < 0.01 in system).
- Henry's law: The partial pressure of the species in the vapor phase is directly proportional to its liquid phase mole fraction.
-

$$
\begin{equation*}
\mathbf{y}_{\mathbf{i}} \mathbf{P}=\mathbf{x}_{\mathrm{i}}{ }^{\prime} \mathbf{H}_{\mathrm{i}} \tag{10.4}
\end{equation*}
$$

Where, ${ }^{\prime} \mathbf{H}_{\mathbf{i}}$ from experiment (table 10.1) values at $25^{\circ} \mathrm{C}$.

- Examples: Removing Ammonia from air stream containing 2\% Ammonia to become odorless.
- $\mathrm{Co}_{2}+$ Water

Table 10.1: Henry's Constants for Gases Dissolved in Water at $25^{\circ} \mathrm{C}$

Gas	$\mathcal{H} / \mathrm{bar}$	Gas	$\mathcal{H} / \mathrm{bar}$
Acetylene	1,350	Helium	126,600
Air	72,950	Hydrogen	71,600
Carbon dioxide	1,670	Hydrogen sulfide	550
Carbon monoxide	54,600	Methane	41,850
Ethane	30,600	Nitrogen	87,650
Ethylene	11,550	Oxygen	44,380

Ex 10.2
Ex.6.2

$$
\mathrm{CO}_{2} \text { o } \mathrm{H}_{2} \mathrm{O}
$$

$x_{i} \subset y_{i}=$? in soduken $\gamma P=$?

$$
\begin{aligned}
& \text { I- } C_{C_{2}}=\text { vat }_{\text {bot }}^{990} 10^{\circ} \mathrm{C} \\
& \text { on } 10^{\circ} \mathrm{C} \\
& S O P_{n} \\
& \mathrm{Co}_{2}(1) \gamma \mathrm{H}_{2} \mathrm{O} \text { (2) } \\
& \text { (C. } \mathrm{C}_{2} \text { very } \alpha_{1} \ln 0 \cdot \alpha_{\text {in }} \mathrm{H}_{2} \mathrm{O} \text {) }
\end{aligned}
$$

Henery law for $C_{2} \quad \Longrightarrow \quad y_{1} P=x_{1}, C_{1}$
γ Roadh'slow $H_{2} \mathrm{O} \Rightarrow y_{2} P=x_{2} P_{2}^{\text {sot }}$
$\left.\Rightarrow p=x_{1}\right) X_{1}+x_{2} \frac{p_{2}^{s a t}}{5}$

* Assome $X_{1}=0.01($ ving low $)$

$$
\begin{aligned}
x_{1}=\frac{p_{-} p_{2}^{\text {set }}}{2 C-p_{2}=0} & =\frac{9}{490-0.01227} \\
& =3.98 \times 10^{-1}
\end{aligned}
$$

$\mathcal{H}_{1}=990$ bar (Hiven)
$h_{2}^{\text {sol }}=0.01227$ bor $\frac{\left(\text { sicem table }\left(10^{\circ} \mathrm{C}\right)\right.}{\text { Rable }(F .1) P^{s / 2}=1.227 \mathrm{kPh}}$

$$
\Longrightarrow P=(0.01)(990)+(0.99)(0.01227)=9.912605
$$

* ure in Hernery's law, firt new value of x

$$
\begin{array}{rr}
y_{1} \simeq 1
\end{array} \quad \Longrightarrow \text { eqn }(10.4) \text { becomes } 1
$$

Confirms orininal assumption.

* By Raale's law Eqi(0.1) for species (2)

$$
\begin{aligned}
y_{2} & =\frac{x_{2} P_{2}^{s a t}}{P}=\frac{(0.99)(0.0127)}{9.912}=0.0012 \\
y_{1}=1-\frac{y}{2} & =1.0-0.0012=0.9988
\end{aligned}
$$

ovapor phore is Rearly Pure C_{2} as arsume o.

10.5 VLE by Modified Raoult's Law

- Deviation from solution ideality.

$$
\mathbf{y}_{\mathbf{i}} \mathbf{P}=\mathbf{x}_{\mathbf{i}} \gamma_{\mathbf{i}} \mathbf{P}_{\mathbf{i}}^{\text {sat }} \quad(\mathrm{i}=1,2, \ldots, \mathrm{~N})
$$

Where $\gamma_{i}=$ Activity coefficient.

- It is function of T and liquid composition and based on experiments. (12.1 give correlations to calculate γ).
- As a result, bubble point and dew point calculations are more complex.
- In this chapter γ values are assumed known.
- General solution:

$\sum y_{i}=1$	
Sum equation 10.5 becomes	$\mathrm{P}=\sum \mathrm{x}_{\mathrm{i}} \gamma_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}^{\text {sat }}$

Also you can solve for x_{i} from 10.5.

$$
\begin{align*}
& \sum \mathrm{x}_{\mathrm{i}}=1 \\
& \mathrm{P}=1 / \sum \mathrm{y}_{\mathrm{i}} \gamma_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}^{\text {sat }} \tag{10.7}
\end{align*}
$$

(2) DEWT Calculacion

$$
\begin{aligned}
& \because P=10 I_{33} \mathrm{kPa} \\
& \therefore T_{1}^{\text {sat }} 8 T_{2}^{\text {sat }} \text { same as pare } \underline{C}
\end{aligned}
$$

The initial volue for che anknown cemp is found as
mole-fraction weighoed average of there values:
AssumeT, $T=(0.4)(337.71)+(0.6)(330.08)=333.13 \mathrm{~K}$ $\gamma_{1}=\gamma_{2}=1$

$$
\text { liquidphore composioion } x_{;} \equiv \text { ? noo known }
$$

$$
\gamma_{1} \text { and } \gamma_{2} \text { can't be coiculeted. } \gamma_{1}=\gamma_{2}=1
$$

Then, Iterative proceture es poro \subseteq is required: -
 (1) currons value of T from Anooine q 's.
(2) Calculare x_{1} by eyn (10.5)

$$
x_{1}=\frac{y_{1} p}{x_{1} p_{1}^{\text {son }}} \quad \operatorname{ant} x_{2}=1-x_{1}
$$

(3) calculace values of γ_{1} and γ_{2} from bhe given eins.
(4) Fing a neer volue for T from Anboine ey'n wribten bo species 1 ,

$$
T=\frac{B_{1}}{A_{1}-\ln P_{1}^{\text {set }}}-C_{1}
$$

Return to the inutial step and iberabe wiohe ohe currani- voluas of γ_{1} ant γ_{2} univil bhe Process convages on afinal voive if T.
final volures $\quad T=326.7 \mathrm{~K} \quad P_{1}^{\text {Sot }}=64.63 \mathrm{kPa} \quad P_{2}^{\text {bod }}=90.89 \mathrm{kPa}$

$$
A=1.0624 \quad \gamma_{1}=1.3625 \quad \gamma_{2}=1.2523
$$

$$
x_{1}=0.4602 \quad x_{2}=0.5398
$$

Figure 10.8: $P x y$ diagrams at constant T : (a) tetrahydrofuran(1)/carbon tetrachloride(2) at $30^{\circ} \mathrm{C}$; (b) chloroform (1)/tetrahydrofuran(2) at $30^{\circ} \mathrm{C}$; (c) furan(1)/carbon tetrachloride(2) at $30^{\circ} \mathrm{C}$; (d) ethanol(1)/toluene (2) at $65^{\circ} \mathrm{C}$. Dashed lines: $P x$ relation for Raoult's law.

- (a): P-x (or bubble point curve) lies below the linear $\mathrm{P}-\mathrm{x}_{1}$ relation characteristics of Raoult's law.
- (b): P- x_{1} curve exhibits a minimum, when the negative departures from linearity become sufficiently large, relative to the difference between the two pure species vapor pressure. Also $\mathrm{P}-\mathrm{y}_{1}$ curve has a minimum at the same point.
- (c): P-x (or dew point curve) lies above the linear $\mathrm{P}-\mathrm{x}_{1}$ relation.
- (d): P- x_{1} curve exhibits a maximum, when the positive departures from linearity become sufficiently large, relative to the difference between the two pure species vapor pressure. Also $\mathrm{P}-\mathrm{y}_{1}$ curve has a maximum at the same point.
- At this point,
- $\mathrm{x}=\mathrm{y}$
- Dew point and bubble curves are tangent to the sane horizontal line.
- For minimum pressure, the vapor and liquid phases in equilibrium have identical composition.
- This is called "Azetrope".
- It means:

A boiling liquid of this composition produces a vapor of exactly the same composition as the liquid; therefore does not change in composition as it evaporate.
NO SEPERATION of such a constant-boiling solution is possible by distillation.

- Negative departure from linearity \equiv Stronger liquid phase intermolecular attractions between unlike than between like pairs of molecules.
- Positive departure from linearity \equiv Stronger liquid phase intermolecular attractions between like than between unlike pairs of molecules.

Figure 10.9: $t x y$ diagrams at 1 (atm): (a) tetrahydrofuran(1)/carbon tetrachloride(2);
(b) chloroform (1)/tetrahydrofuran(2); (c) furan(1)/carbon tetrachloride (2); (d) ethanol(1)/ toluene(2).

- $\quad \mathrm{t}-\mathrm{x}_{1}-\mathrm{y}_{1}$ diagram of data at constant P .
- This is more of interest because distillation process is carried out more nearly at constant P than constant temperature.
- Opposite to figure 10.8. (Azetrope in opposite sides).

Figure 10.10: $y x$ diagrams at $1(\mathrm{~atm})$: (a) tetrahydrofuran(1)/carbon tetrachloride(2);
(b) chloroform(1)/tetrahydrofuran(2);
(c) furan(1)/carbon tetrachloride(2);
(d) ethanol(1)/toluene(2).

- $\quad x_{1}-y_{1}$ at constant pressure for the same systems.
- Point at which curve crosses the diagonal line of diagram is Azetrope $\left(x_{1}=y_{1}\right)$.
- (a) and (c) no azetrope.
- (b) and (d) azetrope across the diagonal.
e- There are two kinds of questions about azetrops:
1- Do we have azetrope at this given temperature for this given system?
2- What are azetropic pressure and azetropic compositions?

1- Do we have azetrope at this given temperature for this given system?

- Let Relative Volatilty,

$$
\begin{equation*}
\alpha_{12}=\left(y_{1} / x_{1}\right) /\left(y_{2} / x_{2}\right) \tag{10.8}
\end{equation*}
$$

- At an Azetrope, $y_{1}=x_{1}, \quad y_{1}=x_{1} \quad$ and $\quad \alpha_{12}=1$
- From modified Raoult's law, eq'n (10.5):

$$
\mathrm{y}_{1} / \mathrm{x}_{1}=\gamma_{1} \mathrm{P}_{1}^{\text {sat }} / \mathrm{P}
$$

- Substitute in 10.8 ,

$$
\begin{equation*}
\alpha_{12}=\gamma_{1} \mathrm{P}_{1}^{\text {sat }} / \gamma_{2} \mathrm{P}_{2}^{\text {sat }} \tag{10.9}
\end{equation*}
$$

- Since $\ln \gamma_{2}=\mathrm{Ax}_{1}{ }^{2}$ and $\ln \gamma_{1}=\mathrm{Ax}_{2}{ }^{2} \quad$ (given)
- Then, When $\quad \mathrm{x}_{1}=0 \quad \rightarrow \quad \gamma_{2}=1 \quad$ and $\quad \gamma_{1}=\exp (\mathrm{A})$
- And, When $x_{1}=1 \quad \rightarrow \quad \gamma_{1}=1 \quad$ and $\quad \gamma_{2}=\exp (A)$
- In these limits, substitute in 10.9 ,

$$
\left(\alpha_{12}\right)_{\mathrm{x} 1=0}=\mathrm{P}_{1}^{\text {sat }} \exp (\mathrm{A}) / \mathrm{P}_{2}^{\text {sat }} \quad \text { and } \quad\left(\alpha_{12}\right)_{\mathrm{x} 1=1}=\mathrm{P}_{1}^{\text {sat }} / \mathrm{P}_{2}^{\text {sat }} \exp (\mathrm{A})
$$

- For the temperature of interest, $\mathrm{P}_{1}^{\text {sat }}=44.51, \quad \mathrm{P}_{2}^{\text {sat }}=65.64 \mathrm{kpa}$
- The limiting values of α_{12} from the above equations; $\left(\alpha_{12}\right)_{\mathrm{x} 1=0}=2.052$ Value of one limit >1 and $\left(\alpha_{12}\right)_{x 1=1}=0.224 \quad$ Value of one limit <1
- So Azetrope does exist.
- α_{12} is a continues function of x_{1} and must pass through the value of 1.0 at some intermediate composition.

2- What are azetropic pressure and azetropic compositions?

- Since for azetrope $\quad \alpha_{12}=1$

Then eq'n 10.9 becomes, $\gamma_{1}{ }^{\mathrm{az}} / \gamma_{2}^{\mathrm{az}}=\mathrm{P}_{2}^{\text {sat }} / \mathrm{P}_{1}^{\text {sat }}=65.64 / 44.51=1.4747$

- The difference between the correlation equations for $\ln \gamma_{1}$ and $\ln \gamma_{2}$ provides the general relation:

$$
\begin{aligned}
\ln \gamma_{1} / \gamma_{2}=\mathrm{A} \mathrm{x}_{2}^{2}-\mathrm{A} \mathrm{x}_{1}^{2} & =\mathrm{A}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{2}+\mathrm{x}_{1}\right) \\
& =\mathrm{A}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\mathrm{A}\left(1-2 \mathrm{x}_{1}\right)
\end{aligned}
$$

- $\quad \ln \gamma_{1} / \gamma_{2}=\ln 1.4747=0.388$
- Then $0.388=\mathrm{A}\left(1-2 \mathrm{x}_{1}{ }^{\mathrm{az}}\right) \quad \rightarrow \mathrm{x}_{1}{ }^{\mathrm{az}}=0.325$
- And $\gamma_{1}{ }^{\text {az }}=1.657$
- With $\mathrm{x}_{1}{ }^{\mathrm{az}}=\mathrm{y}_{1}{ }^{\mathrm{az}}$
- $\quad \mathrm{P}^{\mathrm{az}}=\gamma_{1}{ }^{\mathrm{az}} \mathrm{P}_{1}^{\mathrm{sat}}=(1.657)(44.51)=73.76 \mathrm{kpa}, \quad$ and
- $\quad \mathrm{x}_{1}{ }^{\mathrm{az}}=\mathrm{y}_{1}{ }^{\mathrm{az}}=0.325$
10.6 VLE from K-value correlations

$$
K_{i}=y_{i} / \mathbf{x}_{i}
$$

K-value measure the tendency of species to favor the vapor phase.
$K_{i}>1 \quad$ Species I exhibit a higher concentration in the vapor phase.
$K_{i}<1 \quad$ Species I exhibit a higher concentration in the liquid phase.
Allowing elimination of one set of mole fractions x or y, two types of calculations result:

Bubble point calculation: $\quad \mathbf{y}_{i}=\mathbf{k}_{i_{1}} \mathbf{x}_{i} \quad$ and $\quad \sum \mathbf{y}_{i}=1$
Then $\quad \sum \mathbf{k}_{\mathbf{i}} \mathbf{x}_{\mathrm{i}}=1$
Find the set of K-values that satisfies equation 10.13
Dew point calculation: $\quad \mathbf{x}_{\mathrm{i}}=\mathbf{y}_{\mathrm{i}} / \mathbf{k}_{\mathrm{i}} \quad$ and $\quad \sum \mathbf{x}_{\mathrm{i}}=\mathbf{1}$ Then $\quad \sum \mathbf{y}_{\mathrm{i}} / \mathbf{k}_{\mathrm{i}}=1$
Find the set of K-values that satisfies equation 10.14

- Figures 10.13 1nd 10.14 show monographs for the k-values of light hydrocarbons as function of T and P. They are prepared for average effect of compositions.

Figure 10.13: K-values for systems of light hydrocarbons. Low-temperature range. (Reproduced by permission from C. L. DePriester, Chem. Eng. Progr. Symp. Ser. No. 7, vol. 49, p. 41, 1953.)

Figure 10.14: K-values for systems of light hydrocarbons. High-temperature range. (Reproduced by permission from C. L. DePriester, Chem. Eng. Progr. Symp. Ser. No. 7, vol. 49, p. 42, 1953.)

Ex. 10.4:

a- When system is at its dew point:

- Only an insignificant amount of liquid is present.
- The given mole fraction are values of y_{i}.
- For the given T, K-values depend on the choice of P, by trial and error find the value for which equation 10.14 satisfied.
- Drew a line between the selected pressure and $T=50^{\circ} \mathrm{F}$ and find k-values.

		$P=100$ (psia)		$P=150$ (psia)		$P=126$ (psia)	
Species	y_{i}	K_{i}	y_{i} / K_{i}	K_{i}	y_{i} / K_{i}	K_{i}	y_{i} / K_{i}
Methane	0.10	20.0	0.005	13.2	0.008	16.0	0.006
Ethane	0.20	3.25	0.062	2.25	0.089	2.65	0.075
Propane	0.70	0.92	0.761	0.65	1.077	0.762	0.919
		$\Sigma\left(y_{i} / K_{i}\right)=0.828$	$\Sigma\left(y_{i} / K_{i}\right)=1.174$	$\Sigma\left(y_{i} / K_{i}\right)=1.000$			

- Equation 10.14 satisfied when $\mathbf{P}=126$ psia. This is the dew point P. The dew compositions are given by the values of x_{i} listed in the last column.
b- The system is completely condensed, it is at its bubble point.
- The given mole fraction are values of x_{i}.
- By trial and error find the value of P for which k-values satisfy equation 10.13.
- Drew a line between the selected pressure and $T=50^{\circ} \mathrm{F}$ and find k-values.

		$P=380$ (psia)		$P=400$ (psia)		$P=385$ (psia)	
Species	x_{i}	K_{i}	$K_{i} x_{i}$	K_{i}	$K_{i} x_{i}$	K_{i}	$K_{i} x_{i}$
Methane	0.10	5.60	0.560	5.25	0.525	5.49	0.549
Ethane	0.20	1.11	0.222	1.07	0.214	1.10	0.220
Propane	0.70	0.335	0.235	0.32	0.224	0.33	0.231
		$\Sigma K_{i} x_{i}=1.017$	$\Sigma K_{i} x_{i}=0.963$	$\Sigma K_{i} x_{i}=1.000$			

- Equation 10.13 satisfied when $P=385$ psia. This is the bubble point P. The bubble compositions are given by the values of y_{i} listed in the last column.

Flash Calculations

A liquid at a pressure equal to or greater than its bubble point pressure "flashes" or partially evaporates when the pressure is reduced producing a two phase system of vapor-liquid in equilibrium.

Flash vaporization with V and L in equilibrium

- $\quad L \equiv$ moles of liquid, with mole fraction $\left[x_{i}\right]$.
- $\quad \mathrm{V} \equiv$ moles of vapor, with mole fraction $\left[y_{i}\right]$.
- $Z_{i} \equiv$ over all mole fraction.
- $\quad L+V=1$
- $\quad \mathbf{Z}_{\mathrm{i}}=\mathbf{x}_{\mathrm{i}} \mathbf{L}+\mathbf{y}_{\mathrm{i}} \mathbf{V}$
- Combine equations to eliminate L and substitute with $x_{i}=y_{i} / k_{i}$ then solve for y_{i}

$$
\begin{equation*}
\mathbf{y}_{\mathrm{i}}=\mathbf{Z}_{\mathrm{i}} \mathbf{k}_{\mathrm{i}} / 1+\mathrm{V}\left(\mathbf{k}_{\mathrm{i}}-1\right) \tag{10.16}
\end{equation*}
$$

Since $\sum y_{i}=1$, then

$$
\begin{equation*}
\sum \mathbf{Z}_{\mathrm{i}} \mathbf{k}_{\mathrm{i}} / 1+\mathrm{V}\left(\mathbf{k}_{\mathrm{i}}-1\right)=1 \tag{10.17}
\end{equation*}
$$

The initial step for solving a P-T flash problem is to find the value of V that satisfies this equation.

Read Ex. 10.5

Flash calculations can also be made for light hydrocarbons with data from figures 10.13 and 10.14.

Ex. 10.6

- The given pressure (200 psia) between bubblepoint and dewpoint pressures as found in Ex.10.4.
- So the system consists of two phases.
- K-values from fig. 10.13.
- By trial and error find value of V for which equation 10.17 satisfied.

Species	z_{i}	K_{i}	$\begin{gathered} y_{i} \text { for } \\ \mathcal{V}=0.35 \end{gathered}$	$\begin{gathered} y_{i} \text { for } \\ \mathcal{V}=0.25 \end{gathered}$	$\begin{gathered} y_{i} \text { for } \\ \mathcal{V}=0.273 \end{gathered}$	$\begin{gathered} x_{i}=y_{i} / K_{i} \\ \text { for } \\ \mathcal{V}=0.273 \end{gathered}$
Methane	0.10	10.0	0.241	0.308	0.289	0.029
Ethane	0.20	1.76	0.278	0.296	0.292	0.166
Propane	0.70	0.52	0.438	0.414	0.419	0.805
			$\Sigma y_{i}=0.957$	$\Sigma y_{i}=1.018$	$\Sigma y_{i}=1.000$	$\Sigma x_{i}=1.000$

- Equation 10.17 satisfied when $\mathrm{V}=0.273$
- The phase compositions are given in the last two columns.

