0.2. Functions

Definition 2.1. Let A and B be any two subset of \mathbb{R} . A function f is a rule that assigns to each element x in A exactly one element y in B. In this case, we write y = f(x) which is called the image of x.

The set A is called the domain of f , and denoted by D_f . The set $R_f = \{f(x) | x \in A\} \subseteq B$ is called the range of f.

Vertical Line Test. If any vertical line intersects the graph in more than one point, the curve is not a graph of a function. **Definition 2.2.**

1) A polynomial is a function in the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

where $f(x) = a_n, a_{n-1}, \dots, a_1, a_0 \in \mathbb{R}$ (the coefficients), with $a_n \neq 0, n \ge 0$ is an integer (the degree of the polynomial). The domain is $D_f = \mathbb{R}$.

2) A rational function is a function in the form

$$f(x) = \frac{p(x)}{q(x)},$$

where p and q are polynomials, $q(x) \neq 0$. The domain is

$$D_{f} = \left\{ x \in \mathbb{R} | q(x) \neq 0 \right\} = \mathbb{R} \setminus \left\{ \text{zeros of } q(x) \right\}$$

3) A radical function is a function in the form

$$f(x) = \sqrt[n]{p(x)},$$

where p is a polynomial, and $n \ge 2$ (the index), is a natural number. For the domain we have two cases.

a) If *n* is odd, then $D_f = \mathbb{R}$.

b) If *n* is even, then
$$D_f = \{x \in \mathbb{R} | p(x) \ge 0\}$$
.

Example 2.1.

The followings are polynomials: 1) f(x) = 3, of degree 0(constant function). 2) f(x) = 2x - 1, of degree 1(linear function). 3) $f(x) = 5x^2 - 2x + 7$, of degree 2(quadratic function). 4) $f(x) = x^3 + 5x^2 - 2x + 7$, of degree 3(cubic function). 5) $f(x) = 3x^4 - 2x^3 + 5x^2 - 2x + 1$, of degree 4(quartic function).

Example 2.2.

1) Find the domain of the rational function

$$f(x) = \frac{x^{2} + 1}{x^{2} - x - 6}$$

2) Find the domain of the rational function

$$f(x) = \frac{x+3}{x^2+1}$$

Solution. 1) The function $f(x) = \frac{x^2 + 1}{x^2 - x - 6}$ is a rational function. Then

$$D_f = \left\{ x \in \mathbb{R} \mid x^2 - x - 6 \neq 0 \right\}$$
$$= \mathbb{R} \setminus \{-2, 3\}$$
$$= (-\infty, -2) \cup (-2, 3) \cup (3, \infty)$$

2) The function $f(x) = \frac{x+3}{x^2+1}$ is a rational function. Then $D_f = \{x \in \mathbb{R} | x^2 + 1 \neq 0\}$ $= \mathbb{R}$ $= (-\infty, \infty)$

Example 2.3. 1) Find the domain of the function

$$f(x) = \sqrt[3]{x^2 - 4}$$

2) Find the domain of the function

$$f(x) = \sqrt{x-3}$$

3) Find the domain of the function

$$f(x) = \sqrt{x^2 - 4}$$

4) Find the domain of the function

$$f(x) = \sqrt{4 - x^2}$$

Solution. 1) The function $f(x) = \sqrt[3]{x^2 - 4}$ is a radical function with odd index. Then

$$D_f = \mathbb{R}$$

2) The function $f(x) = \sqrt{x-3}$ is a radical function with even index. Then

$$D_f = \left\{ x \in \mathbb{R} | x - 3 \ge 0 \right\}$$
$$= \left\{ x \in \mathbb{R} | x \ge 3 \right\}$$
$$= [3, \infty)$$

3) The function $f(x) = \sqrt{x^2 - 4}$ is a radical function with even index. Then

$D_f = \left\{ x \in \mathbb{R} \left x^2 - 4 \ge 0 \right\} \right\}$				
$= \left\{ x \in \mathbb{R} \left (x+2)(x-2) \ge 0 \right\} \right.$				
$= (-\infty, -2] \cup [2, \infty)$				
	(-∞,-2)	(-2,2)	(2,∞)	
(x + 2)		+++	+++	
(<i>x</i> – 2)			+++	
$x^2 - 4 = (x + 2)(x - 2)$	+++		+++	

4) The function $f(x) = \sqrt{4-x^2}$ is a radical function with even index. Then

$$D_{f} = \left\{ x \in \mathbb{R} \left| 4 - x^{2} \ge 0 \right\} \\ = \left\{ x \in \mathbb{R} \left| (2 + x)(2 - x) \ge 0 \right\} \\ = \left[-2, 2 \right] \right\}$$

L			
	(-∞,-2)	(-2,2)	(2,∞)
(2+x)		+++	+++
(2-x)	+++	+++	
$4 - x^{2} = (2 + x)(2 - x)$		+++	

Example 2.4. Find the x-intercepts and y-intercepts of $f(x) = x^2 - 4x + 3$.

Solution. To find the x – intercepts, we solve f(x) = 0. Then

$$x^{2} - 4x + 3 = 0$$

(x - 3)(x - 1) = 0

Then x = 0 or y = 0.

To find the y – intercepts, we set x = 0. Thus y = 3.

Let consider the quadratic equation

 $ax^{2} + bx + c = 0$, where, $a \neq 0$. Then the solution(s) is given by the quadratic formula $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

Theorem 2.1. A polynomial of degree n has at most n distinct zeros.

Theorem 2.1. For a polynomial f, f(a) = 0 if and only if (x - a) is a factor of f(x).

Example 2.5. Find the zeros of 1) $f(x) = x^2 - 5x - 12$. 2) $f(x) = x^3 - x^2 - 2x + 2$. Solution. 1) We have a = 1, b = -5, c = -12. Then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-12)}}{2(1)}$ $= \frac{5 \pm \sqrt{25 + 48}}{2}$ $= \frac{5 \pm \sqrt{73}}{2}$ Thus $x = \frac{5 + \sqrt{73}}{2} = 6.772$, or $x = \frac{5 - \sqrt{73}}{2} = -1.772$. 2) By calculating f(1), we have (x - 1) is a factor of $f(x) = x^3 - x^2 - 2x + 2$. Then

$$f(x) = x^{3} - x^{2} - 2x + 2$$
$$= (x - 1)(x^{2} - 2)$$

Here, we have

$$x^{3} - x^{2} - 2x + 2 = 0$$

(x -1)(x² - 2) = 0
(x -1)(x - \sqrt{2})(x + \sqrt{2}) = 0

Then the solution is $x = 1, x = \sqrt{2}$, or $x = -\sqrt{2}$. **Example 2.6.** Find the points of intersection of the parabola $y = x^2 - x - 5$ and the line y = x + 3.

Solution. We set both equations equal. Then

$$x^2 - x - 5 = x + 3$$

Hence,

$$x^{2} - x - 5 - x - 3 = 0$$

$$x^{2} - 2x - 8 = 0$$

$$(x - 4)(x + 2) = 0$$

The solution is x = -2, or x = 4.

Exercises 0.1 I) Identify the type of the function.

1) $x^{3} - 4x + 1$ Sol: Polynomial (cubic). 2) $\frac{x^2 + 2x + 1}{x + 1}$ Sol: rational function. 3) $\sqrt{x^2 + 1}$ Sol: radical function. II) Find the domain of: 4) $f(x) = x^2 + 3x - 4$ Sol: \mathbb{R} . 5) $f(x) = \sqrt{x+2}$ Sol: $D_f = [-2,\infty)$. 6) $f(x) = \sqrt{x^2 - 25}$ Sol: $D_f = (-\infty, -5] \cup [5, \infty)$. 7) $f(x) = \frac{x+2}{\sqrt{x^2-25}}$ Sol: $D_f = (-\infty, -5) \cup (5, \infty)$. 8) $f(x) = \sqrt{25 - x^2}$ Sol: $D_f = [-5, 5]$. 9) $f(x) = \frac{x+2}{\sqrt{25-x^2}}$ Sol: $D_f = (-5,5)$. 9) $f(x) = \frac{4}{r^2 - 1}$ Sol: $D_f = (-\infty, -1) \cup (-1, 1) \cup (1, \infty)$. 10) $f(x) = \sqrt[3]{x-1}$ Sol: \mathbb{R} .

III) Find the x – intercepts and y – intercepts of $y = f(x)$:				
11) $y = x^2 - 2x - 8$. Sol: $x = -2, 4$ and $y = -8$.				
12) $y = x^{3} - 8$ Sol: $(x - 2)(x^{2} + 2x + 4) = 0$ and $y = -8$.				
10) $(-1, -2) \& (3, -2)$				
Sol: 4				
11) $y = \frac{x^2 - 4}{x + 1}$ Sol: $x = \pm 2$ and $y = -4$.				
IV) Find the zeros of				
12) $f(x) = x^2 - 5x + 6$ Sol: $x = 2,3$.				
13) $f(x) = x^3 - 3x^2 + 2x$ Sol: $x = 0, 1, 2$.				
King Abdul Aziz University Mathematics Department Math 110 Workshop 2: Functions				
1) If $f(x) = x^2 - 9$, then the domain is				
$\boxed{A} D_f = \mathbb{R} \boxed{B} D_f = (-\infty, -3] \cup [3, \infty) \boxed{C} D_f = [-3, 3] \boxed{D} D_f = (-3, 3)$				
2) If $f(x) = \sqrt[3]{x-2}$, then the domain is				
$\boxed{A} D_{f} = [2,\infty) \boxed{B} D_{f} = \mathbb{R} \boxed{C} D_{f} = (-\infty,2] \boxed{D} D_{f} = (2,\infty)$				
3) If $f(x) = \sqrt{x^2 - 9}$, then the domain is				
$\boxed{A} D_f = (-\infty, -3) \cup (3, \infty) \qquad \qquad \boxed{B} D_f = (-3, 3)$				
$\boxed{D} D_f = [-3,3] \qquad \qquad \boxed{D} D_f = (-\infty, -3] \cup [3,\infty)$				
4) If $f(x) = \frac{x+5}{\sqrt{9-x^2}}$, then the domain is				
$\boxed{A} D_f = (-\infty, -3) \cup (3, \infty) \qquad \qquad \boxed{B} D_f = (-3, 3)$				
$\boxed{D} D_{f} = [-3,3] \qquad \qquad \boxed{D} D_{f} = (-\infty, -3] \cup [3,\infty)$				
5) If $f(x) = \frac{x+7}{x^2-5x+6}$, then the domain is				
$\boxed{A} D_{f} = (-2, -3) \qquad \qquad \boxed{B} D_{f} = (2, 3)$				
$\boxed{C} D_f = \mathbb{R} \setminus \{2,3\} \qquad \qquad \boxed{D} D_f = \mathbb{R} \setminus \{-2,-3\}$				
6) The function $f(x) = \sqrt{x^2 + x - 1}$ is				
A LinearBCubicCRadicalDRational				

With best wishes from Professor Hamza Ali Abujabal (Room#404) MSN: Prof.h.abujabal@hotmail.com E-mail: prof_h_abujabal@yahoo.com