Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources

M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal

Abstract

Cubic copper ferrite CuFe₂O₄ nanopowders have been synthesized via a hydrothermal route using industrial wastes. The synthesis conditions were systematically studied using statistical design (Box–Behnken Program) and the optimum conditions were determined. The results revealed that single phase of cubic copper ferrite powders can be obtained at different temperatures from 100 to 200 °C for times from 12 to 36 h with pH values 8–12. The crystallite size of the produced powders was in the range between 24.6 and 51.5 nm. The produced copper ferrite powders were appeared as a homogeneous pseudo-cubic-like structure. A high saturation magnetization (Mₘ, 83.7 emu/g) was achieved at hydrothermal temperature 200 °C for 24 h at pH 8. Photocatalytic degradation of the methylene blue dye using copper ferrite powders produced at different conditions was investigated. A good catalytic efficiency was 95.9% at hydrothermal temperature 200 °C for hydrothermal time 24 h at pH 12 due to high surface area (118.4 m²/g).

1. Introduction

Copper ferrite (CuFe₂O₄) is one of the important spinel ferrites MFe₂O₄ because it exhibits phase transitions, changes semiconducting properties, shows electrical switching and tetragonality variation when treated under different conditions in addition to interesting magnetic and electrical properties with chemical and thermal stabilities [1]. It is used in the wide range of applications in gas sensing [2], catalytic applications [3–5], Li ion batteries [6] high density magneto-optic recording devices, color imaging, bio-processing, magnetic refrigeration and ferrofluids [1,7]. Moreover, CuFe₂O₄ assumes great significance because of its high electric conductivity, high thermal stability and high catalytic activity for O₂ evolution from alumina–cryolite system used for aluminum production [8].

CuFe₂O₄ is known to exist in tetragonal and cubic structures. Under slow cooling Cu-ferrite crystallizes in a tetragonal structure with lattice parameter ratio c/a of about 1.06. Tetragonal phase of Cu-ferrite has inverse spinel structure with almost all Cu²⁺ ions occupying octahedral sublattice, whereas Fe³⁺ ions divide equally between the tetrahedral and octahedral sublattices [9]. The tetragonal structure is stable at room temperature and transforms to cubic phase only at a temperature of 360 °C and above due to Jahn–Teller distortion. The distortion is directly related to the magnetic properties. The cubic structure possesses a larger magnetic moment than that of the tetragonal one, because there are more cupric ions (Cu²⁺) at tetrahedral sites in cubic structure as compared to that in the case of tetragonal structure [10]. Nano-sized copper spinel ferrites show unusual properties in comparison with their bulk analogs and receive enormous attention during last decade because of their potential applications. They can be obtained by variety of methods such as solid state reaction [11], mechanochemical [12], sol–gel [13], co-precipitation [14], and combustion synthesis [15], polyol route [16] and microemulsion-hydrothermal route [17]. Most of the previous route led to the formation of tetragonal copper ferrite. From the best of our knowledge, a rarely reported mentioned the synthesis of cubic copper ferrite powders via the hydrothermal route. The correlation between the magnetic and catalytic properties and the microstructure of the produced cubic copper ferrite via the hydrothermal technique need intensive work.

Due to the potential applications of ferrites, recently, special attention is focused on synthesis ferrites from industrial wastes. Copper ferrite CuFe₂O₄ is prepared from copper sludge which collected from a filter press of waste-water treatment process in a surface finishing plant with analytical grade iron oxide powder using ball milling technique [18]. Nano-sized magnetic particles are synthesized from spent pickling liquors by ultrasonic-assisted chemical co-precipitation [19]. Furthermore, Zn₉Fe₂₋ₓO₄, Ni₆Fe₃₋ₓO₄
and Cr₂Fe₃₋₄O₄ (0 < x < 1) were synthesized using wet method [20]. In addition, magnetite Fe₃O₄ particles [21] and Mn–Zn ferrite magnetic materials [22] have been synthesized from the waste water and recycling spent zinc manganese dioxide batteries. Moreover, Rashad et al. synthesized CuFe₂O₄ from the mill scale, waste of steel industry through solid state [23] CuO₂ZnO₃Fe₂O₄ using Cu–Zn spent catalyst consumed in fertilizer industries with ferrous sulfate from the etching during steel industries [24], and NiFe₂O₄ [25] using fly ash, respectively.

Statistical design models have been used for several decades and they can be adopted at various phases of an optimization strategy, such as for screening experiments or for looking for the optimal conditions of targeted responses [26]. Applying the Box–Behnken design is an efficient method to optimize the selected factors as well as to test the effect of factors interaction. Besides it converted the materials synthesis factors correlations into a mathematical model that predicted where the optimal is likely to be located. It is worthwhile to advise the industries sponsors to apply such experimental design to maintain high efficiency and profit process. In our previous work, Rashad et al. used the Box–Behnken design model to optimize the synthesis of NiFe₂O₄ [25] using fly ash, respectively.

Statistical designs have been used for several decades and they can be adopted at various phases of an optimization strategy, such as for screening experiments or for looking for the optimal conditions of targeted responses [26]. Applying the Box–Behnken design is an efficient method to optimize the selected factors as well as to test the effect of factors interaction. Besides it converted the materials synthesis factors correlations into a mathematical model that predicted where the optimal is likely to be located. It is worthwhile to advise the industries sponsors to apply such experimental design to maintain high efficiency and profit process. In our previous work, Rashad et al. used the Box–Behnken design model to optimize the synthesis of NiFe₂O₄ [25] using fly ash, respectively.

2. Experimental

2.1. Materials

In the finishing of steel prior to plating or coating at iron and steel company, Helwan, Egypt, the steel sheet or rod is passed through pickling baths of sulfuric acid. This treatment produces large quantities of iron(II) sulfate as a by-product.

Fe + H₂SO₄ → FeSO₄ + H₂

The produced ferrous sulfate does not contain metals but contains free sulfuric acid ~10%, 0.01% Zn²⁺ and 2% silica which were removed with dissolution with deionized water.

Cu waste was supplied by Banha for the Electronic Industries, Egypt. It was produced from spent copper etchant solutions resulting from the printed circuit boards industry then neutralized with sodium hydroxide. The waste contained 12.5% Cu, 8.7% Cl⁻ with minor Ni 0.001%.

2.2. Procedure

Copper ferrite powders were synthesized as the following: Cu waste from etching of the integrated circuits boards during the electronic industries was treated with 1 M concentrated sulfuric acid (50%) at 60 °C for 15 min. The formed copper sulfate solution was mixed with stoichiometric amount of ferrous sulfate waste from iron and steel making (Fe:Cu mole ratio 2:1) according to the following equation:

\[\text{Cu}^{2+} + 2\text{Fe}^{2+} + 4\text{OH}^- \rightarrow \text{CuFe}_2\text{O}_4 \]

(1)

Then a certain volume of 5 M NaOH was added to the solution until brownish black precipitate precursor Cu(OH)₂:2Fe(OH)₃ was formed instantaneously. The precipitate was filtered, washed by deionized water, and then dried at 100 °C overnight. In this work, effects of three main variables for the preparation of CuFe₂O₄ via hydrothermal method; hydrothermal temperature (100–200 °C), calcination time (12–36 h) and pH (8–12) on the crystal structure, crystallite size, morphology, and the magnetic properties of the produced CuFe₂O₄ powder were studied. The optimum conditions of copper ferrite were obtained. The design-matrix of different runs, 15 experiments, as well as the levels of each factor are shown in Table 1.

Plots of the response surface, contours, and the best predictive models for the estimate of the response variable were developed. The Box–Behnken design in Table 1 can fit the following model [20]:

\[E(y) = \beta_0 + \sum_{i=1}^{3} \beta_i X_i + \sum_{i=1}^{3} \sum_{j=1}^{3} \beta_{ij} X_i X_j + \sum_{i=1}^{3} \beta_i X_i^2 \]

(2)

where \(E(y) \) is sum of the response variable and \(y \) estimate of the response variable (crystallite size, Magnetic parameters “\(M_s \), \(M_r \), and \(H_c \)”) and \(X_i \)'s are the independent variables (pH, time and temperature) that are known for each experimental run. The parameter \(\beta_i \) is model constant, \(\beta_i \) is liner coefficients, \(\beta_i \) is the quadratic coefficients and \(\beta_{ij} \) is the cross-product coefficients. The quality of fit of the polynomial model equation was expressed by the coefficient of determination \(R^2 \). Software package, Design Expert 6.1, Stat-Ease, Inc., Minneapolis, USA, was used for regression analysis of experimental data and to plot response surface. Analysis of variance (ANOVA) was used to estimate the statistical parameters. The extent of fitting the experimental results to the polynomial model equation was expressed by the determination coefficient \(R^2 \). F-Test was used to estimate the significant of all terms in the polynomial equation within 95% confidence interval. Experiments were performed in triplicate and mean value were given.

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Coded factor level</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td></td>
<td>−1</td>
<td>−1</td>
<td>0</td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td>+1</td>
<td>−1</td>
<td>0</td>
</tr>
<tr>
<td>R3</td>
<td></td>
<td>−1</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>R4</td>
<td></td>
<td>+1</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>R5</td>
<td></td>
<td>−1</td>
<td>0</td>
<td>−1</td>
</tr>
<tr>
<td>R6</td>
<td></td>
<td>+1</td>
<td>0</td>
<td>−1</td>
</tr>
<tr>
<td>R7</td>
<td></td>
<td>−1</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>R8</td>
<td></td>
<td>+1</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>R9</td>
<td></td>
<td>0</td>
<td>−1</td>
<td>−1</td>
</tr>
<tr>
<td>R10</td>
<td></td>
<td>0</td>
<td>+1</td>
<td>−1</td>
</tr>
<tr>
<td>R11</td>
<td></td>
<td>0</td>
<td>−1</td>
<td>+1</td>
</tr>
<tr>
<td>R12</td>
<td></td>
<td>0</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>R13</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R14</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R15</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Factors and levels for experimental design using Box–Behnken method

<table>
<thead>
<tr>
<th>Variable</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>36</td>
<td>12</td>
</tr>
</tbody>
</table>
2.3. Physical characterization

The final products were characterized using X-ray diffraction (XRD) on a Bruker axis D8 using Cu Kα radiation (λ = 1.540 Å). The average crystallite size of the powders was estimated automatically from corresponding XRD data using Scherrer formula. SEM images of the nanocrystalline powders were taken with a Scanning Electron Microscopy (SEM, JEOL Model 6300 F). The magnetic properties of the ferrites were measured at room temperature using a VSM (9600-1 LDJ, USA) in a maximum applied field of 16 kOe. From the obtained hysteresis loops, the saturation magnetization M_S, remanence magnetization M_r and coercivity H_c were determined. Specific surface area (S_{BET}) of samples was determined by BET surface area analyzer (Nova 2000 series, Quantachrome Instruments, UK).

Photocatalytic activity of the copper ferrite particles was evaluated by measuring the photocatalytic degradation of methylene blue (C₁₆H₁₈ClN₃S) in water under the illumination of UV light (high pressure mercury vapor lamp, 150 W, predominantly wavelength 254 nm) using UV/Vis/NIR spectrophotometer (V-570, JASCO, Japan). The methylene blue concentration employed was 100 ppm with 0.1 g CuFe₂O₄ then transferred to the cell used for irradiation experiments. The cells were exposed to the UV lamp (150 W) for 60 min at room temperature. The major absorption band of methylene blue was around 665 nm. In order to investigate the photocatalytic activities of CuFe₂O₄, the mineralization of methylene blue was evaluated according to the absorption change spectrophotometer (at 665 nm) in liquid cuvette configuration with de-ionized water as reference. The photocatalytic degradation efficiency of methylene blue dye was calculated by applying the following equation:

$$\text{Degradation } \% = \frac{[C_0 - C]}{C_0} \times 100 \quad (3)$$

where, C_0 is the initial dye concentration and C is the dye concentration after degradation by the copper ferrite catalyst.

3. Results and discussion

Figs. 1 and 2 show the XRD patterns of the copper waste and ferrous sulfate from etching of the integrated circuits board during manufacture of the electronic devices industries and the etching in

![Fig. 1. XRD patterns of the copper waste produced from the etching solution of integrated circuits boards of the electronic devices industry.](image1)

![Fig. 2. XRD pattern of ferrous sulfate waste from the etching during steel making industry.](image2)
the iron and steel making, respectively. The results revealed that the copper waste is clinoatacamite, copper trihydroxy chloride salt Cu2(OH)3Cl phase. However, the iron waste contained ferrous sulfate tetrahydrate FeSO4·4H2O as the main phase with ferrous sulfate heptahydrate as the secondary phase FeSO4·7H2O. The chemical analysis of two wastes using atomic absorption spectrometry showed that the Cu and Fe ratios were 12.5% and 18.5%, respectively.

The copper ferrite powders were formed by transformation of ferrous sulfate and copper sulfate solutions in the presence of sodium hydroxide into copper iron hydroxide (Cu(OH)2·2Fe(OH)2) precursors. The formed precursors were then converted to copper ferrite by thermal treatment at different hydrothermal temperatures according to the following equations:

\[
\begin{align*}
\text{Fe}^{2+} + \text{SO}_4^{2-} & \rightarrow \text{FeSO}_4 \\
\text{Cu}^{2+} + \text{H}_2\text{SO}_4 & \rightarrow \text{CuSO}_4 + 2\text{H}^+ \\
2\text{FeSO}_4 + \text{CuSO}_4 + 6\text{NaOH} & \rightarrow \text{Cu(OH)}_2 \cdot 2\text{Fe(OH)}_2 + 3\text{Na}_2\text{SO}_4 \\
\text{Cu(OH)}_2 \cdot 2\text{Fe(OH)}_2 + 1/2\text{O}_2 & \rightarrow \text{CuFe}_2\text{O}_4 + 3\text{H}_2\text{O}
\end{align*}
\]

Fig. 3a shows XRD patterns of the produced copper ferrites samples at different variables of different hydrothermal temperatures, hydrothermal times and pH values. From Table 2 and Fig. 3a, the results showed that at low hydrothermal temperatures 100°C, low hydrothermal time 12 h and pH 10, Three phases were formed; cubic copper ferrite, c-CuFe2O4 (JCPDS # 77-10), hematite, Fe2O3 (JCPDS # 89-0596) and copper(I) oxide, Cu2O (JCPDS # 77-0199) phases (R1). By increasing hydrothermal time to (36 h) at same

\[
\begin{align*}
\text{Int. A.U.} & \quad 0 \quad 200 \quad 400 \quad 600 \quad 800 \quad 1000 \quad 1200 \quad 1400 \quad 1600 \\
2 \text{Theta (degree)} & \quad 20 \quad 40 \quad 60 \quad 80 \\
\text{R15} & \quad \text{CC} \\
\text{R14} & \quad \text{R13} \\
\text{R12} & \quad \text{R11} \\
\text{R10} & \quad \text{R9} \\
\text{R8} & \quad \text{R7} \\
\text{R6} & \quad \text{R5} \\
\text{R4} & \quad \text{R3} \\
\text{R2} & \quad \text{R1} \\
\text{C=c-CuFe}_2\text{O}_4 (\text{JCPDS # 77-10}), \text{H= Fe}_2\text{O}_3 (\text{JCPDS # 89-0596}), \text{B=Cu}_2\text{O (JCPDS # 77-0199)}
\end{align*}
\]

Fig. 3. XRD analysis of the produced copper ferrite powders (a) all 15 experiments and (b) R5 sample at 100°C, 24 h and pH 8.
previous conditions, two phases' c-CuFe₂O₄ as a major phase and hematite Fe₂O₃ as a minor phase were obtained (R3). At all remains experimental conditions, a pure well crystalline single phase of cubic copper ferrite was obtained (R 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15) with different crystallite size of CuFe₂O₄ nanopowders. The average crystallite size was decreased by increasing the temperature. It decreased from 51.5 nm at low hydrothermal temperature 100°C to 39.6 nm at high hydrothermal temperature 200°C (R1 and R2). This can be explained in terms of formation of pure high well crystalline phase of cubic CuFe₂O₄ phase without other phases. At R3 and R4, The crystallite size was decreased from 45.4 nm at low hydrothermal temperature 100°C to 42.1 nm at high hydrothermal temperature 200°C. At low pH value 8, the crystallite size was increased by increasing the temperature. It increased from 26.25 nm at low hydrothermal temperature 100°C to 32.5 nm at high hydrothermal temperature 200°C. This is

<table>
<thead>
<tr>
<th>R. No</th>
<th>Factors</th>
<th>Response</th>
<th>Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperature (°C)</td>
<td>Time (h)</td>
<td>pH</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>36</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>150</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>36</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>150</td>
<td>36</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>150</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>150</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>150</td>
<td>24</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2
Experimental Box–Behnken design (hydrothermal temperatures 100–200°C, hydrothermal times 12–36 h and pH values 8–12) on phase formation, crystallite size and magnetic properties.

Fig. 4. Contour plots for the effect of reaction time (h) and pH on the copper ferrite crystallite size at different temperatures (100, 150 and 200°C).
diffraction patterns were related to the cubic copper ferrite phase of pure single phase of cubic copper ferrite as shown in Fig. 3b. The ferrite nanopowders by hydrothermal method showed the presence hydrothermally treated at 100°C lead to larger crystallite size explained in terms of agglomeration of the particles together which lead to larger crystallite size. XRD pattern of the produced copper ferrite nanopowders by hydrothermal method showed the presence of pure single phase of cubic copper ferrite as shown in Fig. 3b. The diffraction patterns were related to the cubic copper ferrite phase (JCPDS # 77-10).

Statistical design showed the change of the crystallite size of copper ferrite phase at different synthesis conditions using hydrothermal method. The standard deviation was 3.57 and, the determination coefficient R^2-square 0.9213 which indicated the agreement of the generated model and the experimental results. It is observed that the average crystallite size of produced copper ferrite powders at all experiments ranged from 24.6 nm to 51.5 nm.

The effects of hydrothermal time and pH at different hydrothermal temperatures from 100 to 200°C on the crystallite size of the produced copper ferrite nanoparticles were studied in the basis of contour plots produced from Box–Behnken statistical design program and the results are given in Fig. 4. It was clear that at low temperature, the hydroxyl-complex, Cu(OH)$_2$-2Fe(OH)$_3$, had no sufficient activated diffusion migration energy at such temperature, 100°C, and crystallization process became very slow to form small nanosize particle. With the temperature raising the activated diffusion migration energy was enough to form CuFe$_2$O$_4$ with crystallite size 26 nm. As the temperature reached 200°C, crystallite size was increased again and this may be explained on the basis of the agglomeration of the particle.

Similar way for low, middle and high temperature was observed where, through all the time range, increasing pH to 10 the crystallite size was increased and further pH increasing crystallite size was decreased.

All the experimental data, collected at the 3-D cubic graph as shown in Fig. 5 revealed the lowest crystallite size (25.07 nm) can be obtained at high levels of both hydrothermal temperature and pH and low level of hydrothermal time. The highest crystallite size (37.53 nm) can be obtained at high levels of hydrothermal time and pH and low level of hydrothermal temperature. The optimum lowest crystallite size (24.6 nm) was obtained at hydrothermal temperature 150°C, hydrothermal time 12 h and pH 12. The highest crystallite size (51.5 nm) was obtained at hydrothermal temperature 100°C, time 12 h and pH 10.

The magnetization of the produced CuFe$_2$O$_4$ powders using vibrating sample magnetometer was performed at room temperature under an applied field of 15 kOe and the hysteresis loops of the ferrite powders were obtained. Plots the magnetization M as a function of applied field H per hydrothermal temperature, hydrothermal time and pH were shown in Fig. 5 and the magnetic parameters were summarized in Table 2. From Fig. 6 and Table 2, the results illustrated that high saturation magnetization (83.7 emu/g) can be achieved at high hydrothermal temperature 200°C with middle time 24 h and low pH value 8 (sample R6) whereas high coercive force (138.7 Oe) can be achieved at high levels of temperature 200°C and time 12 h, and middle pH 10 for the sample R4. The high value of saturation magnetization was attributed to the formation of well crystalline single phase of cubic-copper ferrite phase with high crystallinity and well crystallite size whereas the high coercive force can be attributed to the presence of hematite impurity Fe$_2$O$_3$ phase with the produced copper ferrite. Moreover, the variation of H_c with crystallite size can be explained on the basis of domain structure, critical diameter and the anisotropy of the crystal. A crystallite will spontaneously break up into a number of domains in order to reduce the large magnetization energy it would have if it were a single domain [33]. Lower saturation magnetization (37.3 emu/g) was attributed to the formation of nonmagnetic impurities phases of copper and iron oxides.

Fig. 7 showed the effect of hydrothermal time and pH on saturation magnetization of copper ferrite powders at different hydrothermal temperatures. The statistical design showed that the standard deviation was 7.73 and R^2 was 0.8060 that described our results make sense. No interaction between any two synthesis parameters was found using the statistical design data.
At low temperature, the increasing of time led to increasing the saturation magnetization. Furthermore, at middle pH 9.5–10.3, the saturation magnetization was increased by increasing the hydrothermal time. At middle temperature level 150°C, the saturation magnetization was increased compared with low temperature level 150°C. Furthermore, the saturation magnetization was increased by increasing the hydrothermal time at middle pH level. The highest saturation magnetization ($M_s = 86.2$ emu/g) can be achieved at high level of hydrothermal temperature 200°C, low pH 8 and middle level of hydrothermal time 26 h. Increasing the pH level with increasing the hydrothermal time led to decrease in saturation magnetization which can be attributed to the

Fig. 7. Contour plots for the effect of reaction time (h) and pH on the saturation magnetization of copper ferrite powders at different temperatures (100, 150 and 200°C).

Fig. 8. D plots for all experimental data [(time (h), temperature (°C) and pH on (a) saturation magnetization M_s and (b) Coercive force H_c of the produced cubic copper ferrite powders.

At low temperature, the increasing of time led to increasing the saturation magnetization. Furthermore, at middle pH 9.5–10.3, the saturation magnetization was increased by increasing the hydrothermal time. At middle temperature level 150°C, the saturation magnetization was increased compared with low temperature level 150°C. Furthermore, the saturation magnetization was increased by increasing the hydrothermal time at middle pH level. The highest saturation magnetization ($M_s = 86.2$ emu/g) can be achieved at high level of hydrothermal temperature 200°C, low pH 8 and middle level of hydrothermal time 26 h. Increasing the pH level with increasing the hydrothermal time led to decrease in saturation magnetization which can be attributed to the
which is amphoteric and can become either positively or
most metal oxides have a surface layer of the metal hydroxide
Moreover, most colloidal particles are electrically charged, e.g.,
agglomeration. The agglomeration of particles was related to many
homogenous nanospheres copper ferrite particles contained some
thermal time 12 h and pH 8 showed that very fine and
other hand, the smallest coercivity (H_c) was attained at high hydrothermal temperature $200 \, ^\circ C$, hydrothermal time 24 h, and pH 12 modified the microstructure to the pseudo-cubic-like structure with a high uniform grain structure (Fig. 9b). Table 3 shows the photocatalytic degradation of methylene blue by copper ferrite photo catalyst. The results showed that the crystallite size and the phase formed were the main factors for photodegradation of methylene blue. Maximum photodegradation (95.9%) can be attained at crystallite size 29.2 nm. Minimum photodegradation (80.0%) can be attained at crystallite size 42.1 nm. Furthermore, although the crystallite size of the sample R9 is slightly similar to R8, the Photocatalytic degradation was decreased from 95.9% to 87.8%. This may be due to the decrease in the surface area of the sample as shown in Table 3. The results can be explained in basis of the decrease in crystallite size increases the surface area and thereby increases available average active sites. Decrease in crystallite size also increases higher photo-ionic efficiency from a higher interfacial charge carrier transfer rate. This shows that the photodecomposition activity for MB is higher for smaller crystallite size of pure copper ferrite. Highest photoactivity seems to be reasonable because this sample contains the highest c-CuFe2O4 crystallinity and the significant decrease in the photocatalytic activity of CuFe2O4 might be attributed to the variation in phase composition and in particle size in addition to more uniform size of CuFe2O4 particles with lower aggregation of crystallites. The significant increase in the photodecomposition rate seems to be related to electrons scavenging, R^\cdot, as well as production of additional oxidizing species, OH, hydroxyl radical [35,36].

4. Conclusions

The results can be summarized as follows:

- Cubic copper ferrite nanoparticles have been synthesized via hydrothermal method at different temperatures from 100 to $200 \, ^\circ C$ for times from 12 to 36 h with pH values 8–12.
– The synthesis conditions have strongly influenced on the crystal structure, crystallite size, microstructure, magnetic and photocatalytic properties.
– The crystallite size of the produced copper ferrite powders was in the range between 24.6 and 51.5 nm.
– The lowest crystallite size (24.6 nm) was obtained at hydrothermal temperature 150 °C, hydrothermal time 12 h and pH 12. The highest crystallite size (51.5 nm) was obtained at hydrothermal temperature 100 °C, time 12 h and pH 10.
– High saturation magnetization 83.7 emu/g was achieved at high hydrothermal temperature 200 °C with middle time 24 h and low pH value 8 due to well pure crystalline cubic copper ferrite phase formed, whereas high coercive force 138.7 Oe can be achieved at low levels of temperature 100 °C and time 12 h, and middle pH 10 due to formation of Fe3O4 with CuFe2O4 phase.
– The microstructures of the produced powders were affected with the synthesis conditions. The particles appeared as nanospheres at hydrothermal temperature 150 °C, hydrothermal time 12 h and pH 8 which changed to the pseudo-cubic-like structure at hydrothermal temperature 200 °C, hydrothermal time 12 h and pH 8.
– Photocatalytic degradation of the methylene blue dye from aqueous solution was studied. So the produced cubic copper ferrite powders from the industrial wastes were used as W/W (waste for treatment of other waste). The catalytic efficiency was 95.9% at hydrothermal temperature 200 °C for hydrothermal time 24 h at pH 12 due to high surface area 118.4 m²/g.

References
