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Part II: Photometry
Chapter 1

Photometry: what and why?

Many people are interested in astronomy because it is visually exciting. The many marvelous pictures of celestial objects taken using large telescopes on the ground or in space are certainly the most visible manifestation of modern research astronomy. However, to do real science, one needs far more than pictures. Pictures are needed as a first step in classifying objects based on their appearance (morphology). To proceed past this initial stage of investigation, we need quantitative information- i.e. measurements of the properties of the objects. Observational astronomy becomes science only when we can start to answer questions quantitatively: How far away is that object? How much energy does it emit? How hot is it?

The most fundamental information we can measure about celestial objects past our solar system is the amount of energy “in the form of electromagnetic radiation” that we receive from that object. This quantity we will call the flux. The science of measuring the flux we receive from celestial objects is called photometry. As we will see, photometry usually refers to measurements of flux over broad wavelength bands of radiation. Measurement of flux, when coupled with some estimate of the distance to an object, can give us information on the total energy output of the object (its luminosity), the object's temperature, and the object's size and other physical properties.

If we can measure the flux in small wavelength intervals, we start to see that the flux is often quite irregular on small wavelength scales. This is due to the interaction of light with the atoms and molecules in the object. These "bumps and wiggles" in the flux as a function of wavelength are like fingerprints. They can tell us lots about the object- what it is made of, how the object is moving and rotating, the pressure and ionization of the material in the object, etc. The observation of these bumps and wiggles is called spectroscopy. A combination of spectroscopy, meaning good wavelength resolution, and photometry, meaning good flux calibration, is called spectrophotome​try. Obviously, there is more information in a spectrophotometric scan of an object compared with photometry spanning the same wavelength range. Why would one do low wavelength resolution photometry rather than higher resolution spectrophotometry or spectroscopy, given the fact that a spectrum gives much more information than photometry? As we will see, it is much easier to make photometric observations of faint objects than it is to make spectroscopic observations of the same object. With any given telescope, one can always do photometry of much fainter objects than one can do spectroscopy of. On a practical note, the equipment required for CCD imaging photometry is much simpler and cheaper than that needed for spectroscopy. With low cost CCDs now readily available, even small telescopes can do useful photometric observations, particularly monitoring variable objects.

Chapter 2
Imaging, spectrophotometry and photometry 

The goal of the observational astronomer is to make measurements of the EMR from celestial objects with as much detail, or finest resolution, possible. There are several different types of detail that we want to observe. These include angular detail, wavelength detail, and time detail. The perfect astronomical observing system would tell us the amount of radiation, as a function of wavelength, from the entire sky in arbitrarily small angular slices. Such a system does not exist! We are always limited in angular and wavelength coverage, and limited in resolution in angle and wavelength. If we want good information about the wavelength distribution of EMR from an object (spectroscopy or spectrophotometry) we may have to give up angular detail. If we want good angular resolution over a wide area of sky (imaging) we usually have to give up wavelength resolution or coverage.

The ideal goal of spectrophotometry is to obtain the spectral energy distribution (SED) of celestial objects, or how the energy from the object is distributed in wavelength. We want to measure the amount of power received by an observer outside the Earth's atmosphere, or energy per second, per unit area, per unit wavelength or frequency interval. Units of spectral flux (in cgs) look like:




f( = erg s-1 cm-2 Å-1






(2.1)
(pronounced "f-lambda equals ergs per second, per square centimeter, per Angstrom" ), if we measure per unit wavelength interval, or




f( = erg s-1 cm-2 Hz-1






(2.2)
(pronounced "f-nu") if we measure per unit frequency interval.


Figure 2.1 shows a typical spectrum of an astronomical object. This covers, of course, only a very limited part of the total EMR spectrum. Note the units on the axes. From the wavelength covered, which lies in the UV (ultraviolet), a region of the spectrum to which the atmosphere is opaque, you can tell the spectrum was not taken with a ground based telescope.

f( and f( of the same source at the same wavelength are vastly different numbers. This is because a change of 1 Å in wavelength corresponds to a much bigger fractional spectral coverage than a change of one Hz in frequency, at least in the optical. The relationship between f( and f( is:
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(2.3)

Spectrophotometry can be characterized by the wavelength (or frequency) resolution- this is just the smallest bin for which we have information. E.G. if we have "1 Å" resolution then we know the flux at each and every Angstrom interval.
[image: image2.emf]
Figure 2.1: Example spectrum of an astronomical object, the active nucleus in galaxy NGC 4151. Note the 
units on the y axis (10-13 erg s-lcm-2 Å-1). Note the range of units on the x axis- this spectrum 
was obviously not taken with a ground based telescope!

We characterize the wavelength resolution by a number called the "resolution": this is the wavelength (() divided by the wavelength resolution (∆(). E.G. If the wavelength resolution element is 2 Å, and the observing wavelength is 5000 Å, then the resolution is 2500.

To get true spectrophotometry, we must use some sort of dispersing element (diffraction grating or prism) that spreads the light out in wavelength, so that we can measure the amount of light in small wavelength intervals. Now, this obviously dilutes the light. Thus, compared to imaging, spectrophotometry requires a larger telescope or is limited to relatively bright objects. Spectrophotometry also requires a spectrograph, a piece of equipment to spread out the light. Good research grade spectrographs are complicated and expensive pieces of equipment.

Instead of using a dispersing element to define which wavelengths we are measuring, we can use filters that pass only certain wavelengths of light. If we put a filter in front of a CCD camera, we obtain an image using just the wavelengths passed by the filter. We do not spread out the light in wavelength. If we use a filter with a large band pass (broad band filter), then we have much more light in the image than in a single wavelength interval in spectrophotometry. Thus, a given telescope can measure the brightness of an object through a filter to far fainter limits than the same telescope could do spectrophotometry, at the trade off, of course, of less information on the distribution of flux with wavelength. Filters typically have resolutions (here ∆( is the full width at half maximum or FWHM of the filter band pass) of ( / ∆( of 5 to 20 or so. Filters will be discussed in more detail in a later chapter. Thus you can think of filter photometry as very low resolution spectrophotometry. We sometimes take images with no filter. In this case, the wavelengths imaged are set by the detector wavelength sensitivity, the atmosphere transmission, and the transmission and reflectivity of the optics in the telescope. If we image without a filter we get no information about the color or SED of objects. Another problem with using no filter is that the wavelength range imaged is very large, and atmospheric refraction (discussed later) can degrade the image quality.

Filter photometry, or just photometry, is easier to do than spectrophotometry, as the equipment required is just a gizmo for holding filters in front of the detector and a detector (which is now usually a CCD camera). A substantial fraction of time on optical research telescopes around the world is devoted to CCD photometry.

OK, so let’s say you want to know the spectral flux of a certain star in at a particular wavelength, with a wavelength region defined by a filter. How does one go about doing this? Well, you might think you point the telescope at the star, measure the number of counts (think of counts as photons for now) that the detector measures per second, then find the energy of the counts detected (from their average wavelength), and then figure out the energy received from the star. Well, that's a start, but as we will see it's hard, if not impossible, to go directly from the counts in the detector to a precise spectral flux! The first obvious complication is that our detector does not detect every single photon, so we must correct the measured counts for this to get photons. If you measure the same star with the same detector but a bigger telescope, you will get more photons per unit time. Obviously, the flux of the star cannot depend on which telescope we use to measure it! Dealing with various telescope sizes sounds simple- simply divide by the collecting area of the telescope. Well, what is the collecting area of the telescope? For a refractor it’s just the area of the lens, but for a mirror, you must take into account not only the area of the mirror, but also the light lost due to the fact that the secondary mirror and its support structure block some of the light. That's not all you have to worry about- telescope mirrors are exposed to the outside air. They get covered with dust, and the occasional bird droppings and insect infestations. The aluminum coating that provides the reflectivity (coated over the glass that holds the optical figure) gets corroded by chemicals in the air and loses reflectivity over time (and even freshly coated aluminum does not have 100% reflectivity). The aluminum has a reflectivity that varies somewhat with wavelength. Any glass in the system through which light passes (glass covering over the CCD or, for some telescopes, correctors or re-​imaging optics) absorbs some light, always a different amount at each wavelength. How the heck can we hope to measure the amount of light blocked by dust or the reflectivity and transmission of the optics in our telescope? Even if we could, we still have to worry about the effects of the Earth's atmosphere. The atmosphere absorbs some fraction of the light from all celestial objects. As we will see later, the amount of light absorbed is different for different wavelengths, and also changes with time. The dimming of light in its passage through the atmosphere is called atmospheric extinction.
Reading the above list of things that mess up the flux we measure from a star, you might think it impossible to get the accurate spectral flux from any star. Well, it is extremely difficult, but not impossible to get the so called absolute spectrophotometry (or absolute photometry) of a star. One big problem is that it is surprisingly difficult to get a good calibrated light source. Usually the light source used is some bit of metal heated to its melting point, and the radiation is calculated from the melting point temperature and the Planck blackbody radiation law. However, few observations of "absolute photometry" of stars, comparing the flux of a star directly to a physically defined blackbody source of known temperature, have ever been made. (See the articles listed at the end of the chapter.)

So, how do we actually measure the spectral flux of a star? The key idea is that we measure the flux of the object that we want to know about and also measure the flux of a set of stars (called standard stars) whose spectral flux has been carefully measured. Ultimately, most fluxes can be traced back to the star Vega, whose absolute spectrophotometry has been measured, in a series of heroic observations.

So, how does this help? By measuring our object and then measuring the standard star, we can get the flux of our star as a fraction of the standard star flux (or the ratio of the flux of our star to the flux of Vega.) Many of the factors mentioned above, from bird poop to detector efficiency, do NOT affect the ratio of the flux of our star to the flux of the standard stars, as they affect all objects equally. (The atmosphere would "cancel out" if we observe all objects through the same amount of air, but this is impossible because objects are scattered across the sky. However, it is relatively straightforward - at least in principle- to correct for the effect the atmosphere, as discussed later in chapters on atmospheric extinction.)

Astronomers working in the visible portion of the spectrum almost always express ratios or fractions as magnitudes, discussed in detail in another section. For apparent magnitudes (which as related to the flux of a star), we essentially define the zero point of the system by saying that a set of stars has a given set of magnitudes. Historically, Vega had a magnitude of exactly 0.00 at all wavelengths and in all filters. (But see note at end of chapter.) Thus, when we measure a star with an apparent magnitude of 5.00, say, we know that star has a flux 100 times less than a star with magnitude of 0.00. Since we know the flux of the zeros magnitude star (from the absolute measurements) we can easily get the flux of the star, simply by multiplying the flux of the zero magnitude flux standard by 0.01! (Why do 5 magnitudes equal a factor of 100 in brightness? Read the next chapter!)

Chapter 3
The magnitude system

Study the star field photograph shown below. It shows a region of the sky around the constellation Crux, commonly called the Southern Cross. Move your cursor across the photo to identify some stars.

Which star is brightest? 


[image: image3.jpg]



Star field region around the constellation Crux.

If you answered Alpha (α) Centauri, the star at the bottom left of the photograph you are right. As you can see, a photographic image such as this shows many more stars than you can see with your unaided eye. Nonetheless some stars are more prominent than others. In choosing α Centauri you made some assumptions. What were they? 
A photograph such as this shows bright stars as larger disks than fainter stars. Does this mean that these stars are physically larger than the fainter stars in the photo? Remember, in the section on astrometry we learnt that all stars other than our Sun are so distant that they are effectively point sources. Why then do some appear brighter (to our eyes) or larger (in photographs) than others? What, in fact is brightness and how can we measure it? The answers to these questions form the focus of this section.

3.1 Historical Background

The concept of measuring and comparing the brightness of stars can be traced back to the Greek astronomer and mathematician Hipparchus (190 - 120 BC). One of the greatest astronomers of antiquity, he is credited with producing a catalogue of 850 stars with positions and comparative brightnesses. In his system, the brightest stars were assigned a magnitude of 1, the next brightest magnitude 2 and so on to the faintest stars, just visible to the unaided eye which was magnitude 6. This six-point scale can be thought of as a ranking, first-rate stars, the brightest, were first magnitude and dim low-rate stars were sixth magnitude.

The discovery of fainter stars with telescopes in the early 1600s required the scale to be extended beyond magnitude 6. The development of visual photometers, instruments to measure stellar intensities, in the nineteenth century by John Herschel and others prompted the need for astronomers to adopt an international standard. The fact that eyes detect differences in intensity logarithmically rather than linearly was discovered in the 1830s. In 1856 Norman Pogson proposed that a star of magnitude 1 was 100 × brighter than a star of magnitude 6. A difference of one magnitude was therefore equal to 5√100 = 2.512 times in brightness.

3.2 Apparent Magnitude, m
The apparent magnitude, m, of a star is the magnitude it has as seen by an observer on Earth. A very bright object, such as the Sun or the Moon can have a negative apparent magnitude. Even though Hipparchus originally assigned the brightest stars to have a magnitude of 1 more careful comparison shows that the brightest star in the night sky, Sirius or α Canis Major is (CMa) actually has an apparent magnitude of m = -1.44. With the recalibration of Hipparchus' original values the bright star Vega is now defined to have an apparent magnitude of 0.0. 

Following the telescopic discovery of faint stars in the early 1600s the magnitude scale has also had to be extended to objects fainter than magnitude 6. The table below shows the range of apparent magnitudes for celestial objects.

Table 3.1: Apparent Magnitude Range
	Object
	Apparent magnitude

	Sun
	-26.5

	Full Moon
	-12.5

	Venus
	-4.3

	Mars or Jupiter
	-2

	Sirius (α Sco)
	-1.44

	Vega (α Lyr)
	0.0

	Alnair (α Gru)
	1.73

	Naked-eye limit
	6.5

	Binocular limit
	10

	Proxima Cen
	11.09

	Visual limit through 20 cm telescope
	14

	QSO at red shift z = 2 
	≈ 20

	Cepheid in galaxy M100 observed with HST
	26

	Galaxy at z = 6 observed with Gemini 8.1 m telescope
	28

	Limit for James Webb Space Telescope
	≥ 30




If a star of magnitude 1 is 2.512 × brighter than a star of magnitude 2 and 100 × brighter than a sixth magnitude star how much brighter is it than a star of magnitude 3? You need to be careful here. It is not simply 2 × 2.512 different. You need to remember that a difference of one magnitude equals 5√100 = 2.512. A difference of 2 magnitudes therefore = 2.5122 = 6.31 × difference in brightness. 

Two objects of different magnitudes therefore vary in brightness by 2.512 raised to the power of thee magnitude difference. If we write this as an equation, the ratio of brightness or intensity, FA/ FB between two objects, A and B, with magnitudes mA and mB is given by the following equation:

FA/FB = 2.512mB - mA 






(3.1)
By taking the log for the two sides of Equation (3.1),
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Equation (3.1) can be written in the following form
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(3.2)
Let us have a look at an example.

Example 1: Comparing two stars,
How much brighter is Alnair, apparent magnitude of +1.73 than Proxima Cen with a magnitude of 11.09?
Using equation 3.1 we have:

 FAlnair/ FProx = 2.512mProx - mAlnair 

so, substituting in:

 FAlnair/ FProx = 2.51211.09 - 1.73 (  FAlnair/ FProx = 2.51211.09 - 1.73 

 FAlnair/ FProx = 2.5129.36 
(
 FAlnair/ FProx = 5,549 

( Alnair is about 5,550 × brighter than Proxima Cen 
Example 2: How much brighter is the Sun than the full Moon?
For this we recall from the table above that the Sun has an apparent magnitude of -26.5 and the full Moon, - 12.5.

So using equation 3.1 we get:

 FSun/ FMoon = 2.512mM - mS 

Substituting in gives us:

 FSun/ FMoon = 2.512-12.5 - (-26.5)     (       FSun/ FMoon = 2.51214.0   (   FSun/ FMoon = 398,359 

( the Sun is about 400,000 × brighter than the full Moon.
It is important to remember that magnitude is simply a number, it does not have any units. The symbol for apparent magnitude is a lower case m; you must make this clear in any problem.

3.3 Absolute Magnitude, M
What does the fact that Sirius has an apparent magnitude of -1.44 and Betelgeuse an apparent magnitude of 0.45 tell us about these two stars? Another way of thinking about this is to ask why is Sirius the brightest star in the night sky? A star may appear bright for two main reasons:

1. It may be intrinsically luminous, that is it may be a powerful emitter of electromagnetic radiation, or 

2. It may be very close to us, or both. 

The apparent magnitude of a star therefore depends partly on its distance from us. In fact Sirius appears brighter than Betelgeuse precisely because Sirius is very close to us, only 2.6 pc away whereas Betelgeuse is about 160 pc distant. The realization that stars do not all have much the same luminosity meant that apparent magnitude alone was not sufficient to compare stars. A new system that would allow astronomers to directly compare stars was developed. This system is called the absolute magnitude, M.
The absolute magnitude, M, of a star is the magnitude that star would have if it were at a distance of 10 parsecs from us. A distance of 10 pc is purely arbitrary but now internationally agreed upon by astronomers. The scale for absolute magnitude is the same as that for apparent magnitude, that is a difference of 1 magnitude = 2.512 times difference in brightness. This logarithmic scale is also open-ended and unitless. Again, the lower or more negative the value of M, the brighter the star is. Absolute magnitude is a convenient way of expressing the luminosity of a star. Once the absolute magnitude of a star is known you can also compare it to other stars. Betelgeuse, M = -5.6 is intrinsically more luminous than Sirius with an M = +1.41. Our Sun has an absolute visual magnitude of +4.8.
3.4 Finding the Distance to Stars - Distance Modulus
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As you may recall from the section on astrometry, most stars are too distant to have their parallax measured directly. Nonetheless if you know both the apparent and absolute magnitudes for a star you  can determine its distance. Let us look again at Sirius and Betelgeuse plus another star called GJ 75.

How far away is GJ 75? It is an unusual star in that it’s apparent and absolute magnitudes are the same. Why? The reason is that it is actually 10 parsecs distant from us, so by definition its two magnitudes must be the same.

What about Sirius? Its apparent magnitude is lower (therefore brighter) than its absolute magnitude. This means that it is closer than 10 parsecs to us. Betelgeuse's apparent magnitude is higher (therefore dimmer) than its absolute magnitude so it would appear even brighter in the night sky if it were only 10 parsecs distant. 

Is there a quick way of checking whether a star is close or not? Looking at the above table we see that if a star is at a distance of 10 parsecs, then m = M or m - M = 0.

For Sirius, m - M = (-1.44) - 1.41 = -2.85. This value is negative and Sirius is closer than 10 pc. For Betelgeuse, m - M = 0.45 - (-5.14) = 5.59. This value is positive and Betelgeuse is more than 10 pc distance.

Astronomers use the difference between apparent and absolute magnitude, the distance modulus, as a way of de terming the distance to a star. 

· Distance Modulus = m - M. 

· Distance modulus is negative for stars closer than 10 parsecs. 

· Distance modulus is positive for stars further away than 10 parsecs. 

· The size of the distance modulus determines the actual value of the distance, so that a star of distance modulus 1.5 is closer than one with a distance modulus of 8.7. 

3.5 Magnitude/Distance Calculations

The distance modulus can be used to determine the distance to a star using the equation:

m - M = 5 log (d/10) 






(3.3) 
or
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where d is in parsecs. Note that if d = 10 pc then m and M are the same. (A formal derivation of this equation is given in the next chapter on luminosity). 

M = m - 5 log (d/10) 






(3.5) 
Or
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(3.6)
But this is simply a reworking of equation 3.2. You should be comfortable in solving this equation given any two of the three variables. Let us know look at how you can solve some examples.

Example 3: Given m and d, need to find M.
β Crucis (or Mimosa) has an apparent magnitude of 1.25 and is 108 parsecs distant. What is its absolute magnitude?
Using equation 3.3 we have:
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      (   M = -3.92 

So, β Crucis has an absolute magnitude of -3.92. 
Note this calculation has shown full working so that each step is explicit. (Remember in solving magnitude equations log refers to logarithms to base 10 and not natural logarithms or ln.)

Example 4: Given m and M, find d.
Betelgeuse has an apparent magnitude of 0.45 and an absolute magnitude of -5.14. How far away is it?
This problem requires us to rewrite equation (3.2) to give us d as the unknown. This is shown below:
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(  d = 131 parsecs 

so Betelgeuse is about 130 pc distant.

Again, this example shows complete working whereas in reality you may not show every step. It is important, however, that you set your working to such problems out clearly so you can check your algebraic manipulation and your substitutions. Working with logs and indices can be tricky so ensure you know how to do these on your calculator.
Example 5: Given M and d, find m.
In practice this type of problem is less realistic for actual objects as we can normally measure their apparent magnitudes directly however it may be that we wish to calculate what apparent magnitude a class or type of object may have given the other parameters. Again, starting with equation 3.3 let us determine how bright a supergiant such as Deneb with an absolute magnitude of -8.73 would appear if it was 230 parsecs away.
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(  m = -1.92 
so Deneb would have an apparent magnitude of -1.92. This would make it brighter in our night sky than Sirius (m = -1.44). In reality Deneb is about 990 pc distant although this value has a large uncertainty.

Example 6: What if d is not given but parallax, p is given?
This is actually very straight forward. There is a direct relationship between distance and parallax.

d (pc) = 1/p(arcsesonds) 

Equation (3.2) becomes
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Equation (3.3) becomes
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__________________________________________________________________________________
Problem 1: The apparent magnitude of the variable star RR Lyrae ranges from 7.1 to 7.8. Find the relative increase in brightness from minimum to maximum.
Problem 2: A binary system consists of two stars (A) and (B), with a brightness ratio of 2; however, we see them unresolved as a point of magnitude +5.0. Find the magnitude of each star.

Problem 3: If a star has an apparent magnitude of -0.4 and a parallax of 0.3”, what is: 

(a) the distance modulus? 

(b) the absolute magnitude?

Problem 4: What is the combined apparent magnitude of a binary  system consisting of two stars of apparent magnitude +3.0 and +4.0?
Chapter 4
Luminosity of stars

The absolute magnitude of a star is simply a simple way of describing its luminosity. Luminosity, L, is a measure of the total amount of energy radiated by a star or other celestial object per second.. This is therefore the power output of a star. A star's power output across all wavelengths is called its bolometric luminosity. Astronomers in practice also measure an object's luminosity in specific wavebands so that we can discuss an object's X-ray or visible luminosities for example. This is also used to measure a star's color as described on the next page.

Our Sun has a luminosity of 3.84 × 1026 W or J.s-1 which can be denoted by the symbol Lsol (actually the subscript symbol is normally a dot inside a circle - the standard astrological symbol for the Sun but this cannot be shown in html). Rather than always use this exact value it is often more convenient to compare another star's luminosity L* to the Sun's as a fraction or multiple. Thus if a star is twice is luminous as the Sun, L*/Lsol = 2. This approach is convenient as the luminosity of stars varies over a huge range from less than 10-4 to about 106 times that of the Sun so an order of magnitude ratio is often sufficient.

4.1 What determines a star's luminosity?

As we have seen in the section on spectroscopy, we can approximate the behavior of stars as black body radiators. 

What properties determine the intrinsic power output or luminosity of a star? 
[image: image19.png]


Answer 

Temperature and size of the star. 

Fundamentally there are just two key properties - the effective temperature, Teff and the size of the star, its radius, R. Let us look briefly at each of these: 

1. Temperature: A black body radiates power at a rate related to its temperature - the hotter the black body, the greater its power output per unit surface area. An incandescent or filament light bulb is an everyday example. As it gets hotter it gets brighter and emits more energy from its surface. The relationship between power and temperature is not a simple linear one though. The power radiated by a black body per unit surface area is given varies with the fourth power of the black body's effective temperature, Teff. So; the power output, F α T4 or F = σT4 for a perfect black where σ is a constant called the Stefan-Boltzmann constant. It has value of σ = 5.67 × 10-8 W m-2 K-4 in SI units. As a star is not a perfect black body we can approximate this relationship as:

F ≈ σT4





 (4.1) 

This relationship helps account for the huge range of stellar luminosities. A small increase in effective temperature can significantly increase the energy emitted per second from each square meter of a star's surface.

2. Size (radius): If two stars have the same effective temperature but one is larger than the other it has more surface area. The power output per unit surface area is fixed by equation 3.3 so the star with greater surface area must be intrinsically more luminous than the smaller one. This becomes apparent when we plot stars on an HR diagram.

Assuming stars are spherical then surface area is given by: 

Surface area = 4πR2 




(4.2) 

where R is the radius of the star.

To calculate the total luminosity of a star we can combine equations (4.1) and (4.2) to give:

L ≈ 4πR2σT4 





(4.3) 
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Using equation (4.3) all we need in order to calculate the intrinsic luminosity of a star is its effective temperature and its radius. In practice this equation is not used to determine the luminosity of most stars as only a few hundred stars have had their radii directly measured. If however, the luminosity of a star can be measured or inferred from other means (e.g. by spectroscopic comparison) then we can actually use equation (4.3) to determine the radius of the star. 
4.2 Comparing luminosities and brightnesses

Let us imagine we have two stars, A and B that we wish to compare. If we can measure their respective apparent magnitudes, mA and mB how will they differ in brightness? The ratio of the brightnesses (or intensities) FA/FB corresponds to their difference in magnitude, mB - mA . Remember, as a difference of one magnitude means a brightness ratio of the fifth root of 100 or 1001/5, a difference of mB - mA magnitudes gives a ratio of (1001/5)mB - mA 




( FA/FB = 100(mB - mA)/5 





(4.4)

If you are mathematically astute you should realize that this is in fact the same as equation (3.1) from the previous page, i.e. FA/FB = 2.512mB - mA.

4.3 Deriving the magnitude/distance equation (3.2)

On the previous page we used the distance modulus equation (3.3). How is this equation derived? It is simply an application of the luminosity ratio relationship (4.4).

The luminosity of a star relates to its absolute magnitude, which is the magnitude that would be observed if the star were placed at a distance 10 pc from the Sun. The inverse-square law of light links the flux (F) of a star at distance (d) to the luminosity (L) it would have it if were at distance D = 10 pc: 

L/F = (d/D)2 = (d/10)2 




(4.5)

If M corresponding to L and m corresponding to F, then Equation (3.2) becomes

m - M = 2.5 log(L/F) 
(  m - M = 2.5log(d/10)2 
(   m - M = 5 log(d/10) 

4.4 Using Luminosity to Compare Stars - Sample Problems

Example 1: Comparing brightness of two stars given apparent magnitudes.
α Car (Canopus) has an apparent magnitude of -0.62 whilst the nearby star Wolf 359 has an apparent magnitude of 13.44.
a) Which star appears brightest in the sky?
b) How many times brighter is it than the other star? 

a) The answer to this part is really just checking your understanding of the concept of apparent magnitude. As Canopus has a lower value (-0.62) than Wolf 359 (+13.44) it appears brighter in the night sky. In fact Canopus is the second brightest star visible in the night sky after Sirius A whereas with an apparent magnitude of 13.44 Wolf 359 is far too faint to be visible to the naked or unaided eye.

b) How much brighter is Canopus than Wolf 359? For this we can use equation 4.2:
FA/FB = 100(mB - mA)/5 
(    FCan/FWolf = 100(mWolf - mCan)/5
Substituting in we get:
FCan/FWolf = 100(13.44 - (-0.62))/5 
(  FCan/FWolf = 100(14.06)/5 


(  FCan/FWolf = 1002.812 
(  FCan/FWolf = 420,727 

so Canopus is ≈ 4.207 × 105 × brighter in the sky than Wolf 359. 

Example 2: Calculating brightness range for a variable star.
δ Cephei is a pulsating variable star that changes its apparent magnitude from 3.5 to 4.4 with a period of 5.366 days. It was the first such star discovered and has given its name to a class of variable stars. The importance of these is discussed in a later section. How much brighter is δ Cephei when at maximum brightness than at minimum?

Again, let us start with equation 4.3:

FA/FB = 100(mB - mA)/5 

In this type of problem we simply substitute in the two values for the apparent magnitudes for the same star so;

 Fmax/ Fmin = 100(mmin - mmax)/5 
(   Fmax/ Fmin = 100(4.4 - 3.5)/5 

 Fmax/ Fmin = 1000.18 

(   Fmax/ Fmin = 2.291 

( δ Cephei is about 2.3 × brighter at its maximum than its minimum brightness.
Example 3: Comparing two stars' luminosities.
How much more luminous is Betelgeuse than our Sun?
The Sun has an absolute visual magnitude MS = 4.8 and Betelgeuse has an absolute magnitude MB = -5.14 so we can rewrite equation 4.4 to give us:
LB/LS = 100(MS - MB)/5 

so substituting in:

LB/LS = 100(4.8 - (-5.14))/5 
(   LB/LS = 1009.94/5 

LB/LS = 1001.988 

(  LB/LS = 9,462 

( Betelgeuse is about 9,500 × more luminous than our Sun. 

___________________________________________________________________________________
Problem 1: What would be the expression for absolute magnitude be, in terms of apparent magnitude and distance, if absolute magnitude were defined as the magnitude a star would have at 100 pc?
Problem 2: The Sun has an apparent visual magnitude of -26.75.

(a) Calculate its absolute visual magnitude.

(b) Calculate its magnitude at the distance of Alpha Centauri (1.3 pc)

(c) The Palomar Sky Survey is complete to magnitudes as faint as +19. How far away (in pc) would a star identical to the Sun have to be in order to just barely be bright enough to be visible on Sky Survey photographs?
Chapter 5
The color of stars

Astronomy is full of color references; white dwarfs, black holes and red giants for example. If you look up into the night sky you may be able to see a few thousand stars from a dark site. As the stars are all so distant they appear as points in the sky. Most appear white but a few stars such as Antares and Betelgeuse have an orange or reddish hue to them. Others such as Rigel suggest a bluer color. The colors of stars, however, are not obvious in most stars for several reasons discussed below. Color is nonetheless an important and useful property of stars. In this page we will look at how it is defined, measured and used in astronomy.
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5.1 Stellar Colors
The photo above shows a small section of a star field in Sagittarius taken by the HST from space. The variety of colors of the stars is immediately obvious. Colors vary from bluish-white through to red. Why do stars have different colors?

The color of a star is primarily a function of its effective temperature. You should recall that a star approximates the behavior of a black body radiator. As a black body gets hotter its color changes. If you were to heat a solid shot put it would first emit radiation in the infrared region. Further heating would see it glow a dull reddish color. With more heating it could eventually glow orange, yellow, white and eventually blue-hot. Ultimately if it were hot enough a black body emits most of its energy in the ultraviolet region. Although stars are not perfect black bodies this relationship between temperature and color still applies to them. 

The color that we see is usually an additive combination of the emissions from each wavelength. Hot stars appear blue because most energy is emitted in the bluer parts of the spectrum. There is little emission in the blue parts of the spectrum for cool stars - they appear red. Even though the Sun's peak emission wavelength (Wien's Law) corresponds to the green part of the spectrum, its color appears pale yellow due to the relative contributions of the different parts of its Planck curve to the overall color. The table below shows the approximate color and temperature range for stars.
Table 5.3: Color -Temperature range for stars. Colors are for Main Sequence (V) mid-Spectral Class (5).
	Spectral Class
	O
	B
	A
	F
	G
	K
	M

	Temperature
(K)
	50,000 - 28,000
	28,000 - 10,000
	10,000 - 7,500
	7,500 - 6,000
	6,000 - 4,900
	4,900 - 3,500
	3,500 - 2,000

	Color
	Blue
	Blue-
white
	White
	White-
yellow
	Yellow
	Orange
	Red 


(The colors shown in the above table are the correct hexadecimal codes for RGB monitors based on details from M. Charity at MIT. They represent the color from an extended gas disk and not a point source.)

Even though stars have different colors, our perception of stellar colors in the night sky is poor. The reasons for this are discussed next.

5.1 Human vision

Our eyes are extremely sensitive detectors of visible photons. Only a few incident photons are needed to trigger a stimulus response in our eyes. If we use other detectors such as photographic plates or CCDs to detect light from stars rather than our eyes the color recorded may not be the "true" color of the star for other reasons.
5.2 Measuring Color - Color Index

In order to use the color of star astronomers first need to define it and then have a way to measure it. Luckily there is a simple way to do both that relates back to the spectrum of a star. A typical star's spectrum approximates a Planck curve. This means the intensity of emitted energy varies with wavelength such that a hot star emits relatively more energy at blue wavelengths than at red whilst a cool star's emission peaks at red wavelengths. If the intensity is measured at a specific wavelength or narrow waveband then it can be compared with intensity at other narrow wavebands. The intensity is expressed as apparent magnitudes. 

Rather than just have one apparent magnitude, m measured across the entire visible spectrum we can use a filter to restrict the incoming light to a narrow waveband. If, for instance, we use a filter that only allows light in the blue part of the spectrum, we can measure a star's blue apparent magnitude, mB. This is generally abbreviated to B. A blue filter provides a waveband similar to the maximum sensitivity of most photographic film which peaks at blue wavelengths of around 440 nm (which is why red lights are used in darkrooms). Similarly if we use a filter that approximates the eye's visual response which peaks in the yellow-green part of the spectrum we measure mV or V for a star.

This system of measuring magnitudes at two different wavebands, B and V forms the basis of defining the "color" of stars. Rather than use words such as red or orange, astronomers define the color of a star to be its color index. Color index or CI is simply a number equal to the difference between the blue, B and visual, V magnitudes of a star. This is shown by equation 5.1: 

Color Index, 




CI = B – V

 (5.1)

or 





CI = mB - mV 
How does this apply in practice to stars? Let us look at two different stars, one with an effective temperature of 15000 K and the other of 3000 K. Each of these will produce a spectrum that approximates a black body curve. The diagram below shows these two curves on a normalized intensity plot (if we used a true intensity scale the plot for the 3000 K star would be dwarfed by that for the hotter star). You can see that in the visible part of the spectrum the curve is sloping down to the right for the 15000 K star whilst it slopes up for the cooler star. The two black lines represent the peak wavelengths for the B and V filters.
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Comparison of two stars through B and V filters.

The blue curve represents the 15000 K star. It emits more energy in the B waveband than in the V waveband. This means that it is brighter in B than in V therefore its apparent magnitude B will be lower than apparent magnitude V. Color Index is B - V so for this star it will be < 0, which is negative. This is shown in the diagram below:
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Measurement of color index for a hot star.

For a 3000 K star that emits more energy at the V rather than B waveband, B - V must be > 0, which is positive. The diagram below shows this:
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Measurement of color index for a cool star.

The calibration of the color index scale means that a star of spectral class A0 and luminosity class V (i.e. a main sequence star) has a color index of 0.0. Vega, (α Lyrae) is such a star. Stars hotter than Vega will have a negative color index and appear more bluish. Stars with a positive color index are cooler than Vega and will appear more yellow, orange or red. Note the "shade" of color is an indistinct term whereas the color index is a directly measurable value. A range of color indexes related to spectral class are shown in table 5.2. Color Index ranges from about -0.3 for an O4 V star to +2.0 for a high M-class star.  
Table 5.2: Color Index for some prominent Stars
	Star
	Spectral & Luminosity Class
	Color Index

	σ Ori 
	O9.5 V
	-0.24

	Achernar (α Eri) 
	B3 V
	-0.16

	Vega (α Lyr)
	A0 V
	0.00

	Procyon (α CMi)
	F5 IV-V
	+0.42

	Sun
	G2 V
	+0.65

	Aldebaran (&alpha Tau)
	K5 III
	+1.54

	Betelgeuse (α Ori)
	M1 Ia
	+1.85


Luminosity class does affect the color index for a star so that a main sequence (V) star and a supergiant (Ia) of the same spectral class may not have quite the same CI but this correction factor is beyond the scope of the syllabus. A table showing the color index for main sequence (luminosity class V) stars is below:

Table 5.3: Color Index values for main sequence (V) spectral class stars.

	Spectral Class
	Color Index

	B0
	-0.30

	A0
	0.00

	F0
	+0.30

	G0
	+0.58

	K0
	+0.81

	M0
	+1.40


Example 1: The main sequence star τ Cet has an apparent B magnitude of +4.22 and an apparent v magnitude of 3.50. 
a) What is its color index? 
b) What is its approximate spectral class and color?

CI = B - V  

a) so, substituting in:

CI = 4.22 - 3.50 

∴ CI = 0.72 

so τ Cet has a color index of +0.72

b) By referring to Table 5.2 above we can see that τ Cet a spectral class somewhere between G0 and K0, probably in the upper region of G. In fact its actual spectral class from a catalog is G8. As a G-class star it would be yellow in color.

Example 2: Procyon (α CMi) has an apparent V magnitude of +0.38 and a color index of +0.42. What would be its apparent magnitude at the B waveband?
CI = B - V 
we are given CI and V but need to find B, 

B = CI + V 

now substituting in:

B = 0.42 + 0.38 

∴ B = 0.80 

so Procyon has a B magnitude of 0.80.

5.3 Filters in Astronomy

The concept of color index is an extremely useful tool for astronomers. To determine the color (hence also the effective temperature) of a star no longer requires them to obtain the spectrum of a star. Taking two images through different filters then measuring the apparent magnitude on each image is all that is required. Depending on the field of view of the image plate and the exposure time, many thousands of stars may appear on a single image. With modern image analysis the apparent magnitudes of all this objects can be quickly and automatically measured then used to determine the color index and approximate temperatures of all the field stars.

In practice astronomers are interested in measuring brightness at more than two wavebands, B and V. The B waveband developed from a desire to measure the brightness of objects at the peak sensitivity of photographic film whilst the V waveband approximates the spectral response of human vision. By measuring brightness at even more wavebands we can fix more points along a star's spectral curve without actually having to take a spectrum. Virtually all imaging of celestial objects for research purposes is made by taking light that has passed though a filter. Using a filter of known spectral response allows astronomers to make accurate photometric measurements. Different filters are optimized for different parts of the electromagnetic spectrum.

If we concentrate on the visible, near infrared and near ultraviolet parts of the spectrum there are several filters commonly used by astronomers. in fact several different systems have been developed, many for very specific projects or to match with the characteristics of new detectors. Early CCDs used for astronomy, for instance, were relatively insensitive to the far blue parts of the spectrum compared with their response at longer, redder wavelengths and thus had a different spectral response to photographic emulsions. 

Filters for ultraviolet, visible and infrared observations are normally colored glass, that only allows a narrow waveband, typically about 100 nm wide, of radiation through. Other types of optical filters use interference to produce very narrowband filters where the waveband may only be a few nanometers wide. One example is the H-$alpha filter that peaks at 652 nm. It is used for solar observations.

The Johnson system is a standard one that uses five filters, U, B, V, R and I that have peak responses in the ultraviolet, blue, yellow-green, red and near infrared parts of the spectrum respectively. A plot showing the spectral response of the Johnson series of filters is below. It actually shows a modified form developed by M. Bessel.
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Normalized intensity plot showing the spectral response of the five filters in the 
Johnson-Cousins system modified by Bessel.

The peak wavelengths for the filters under the standard Johnson UBVRI system are tabulated below:
Table 5.4: Peak Transmission Wavelength for Johnson UBVRI Filters.

	Filter
	Peak Wavelength for Maximum Transmission (nm)

	U
	365

	B
	440

	V
	550

	R
	700

	I
	900


An example comparison of stellar images through different filters is shown below. The central star in each image is R Canis Minor (R CMi), a very red carbon star of C7 spectral class. Note how it appears much brighter through the red filter than the blue filter. The spikes surrounding it at not "real", that is they are not actually part of the star. they are diffraction spikes caused by the light bright light from the point source stars diffracting on the telescope optics. Similarly the halo around R CMi in the red frame is caused by photochemical processes when the original photographic plate is exposed to bright point sources. Halos and diffraction spikes are examples of artifacts. 
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Digital Sky Survey data obtained from SkyView.
Two other stars have been highlighted in the fields above. See how the hot star is visible in the blue plate but much fainter in the red. The cool star is more prominent on the red plate than the blue.

Filters are also used at other wavebands in the EM spectrum. Radio telescopes use electrical filters where the attenuation of a signal varies with frequency. As with optical-type filters, they can be optimized to allow a wide or limited range of frequencies through.
5.4 Interstellar reddening and extinction.

Interstellar space is not a perfect vacuum. The interstellar medium (ISM) comprises cold neutral gas (H I at ≈ 70 K), warm neutral gas (H I at 6,000 K) and hot ionized plasma (H II at 106 K) primarily located in the plane of the galaxy in the spiral arms. Cosmic dust is made up of small grains of silicates, iron, carbon, frozen water and ammonia ice 0.1 to 0.01 microns (μm) in size. Although this cosmic dust only makes up 1% of the mass of the ISM it absorbs and scatters light from stars. This means that light from a distant star is reduced in intensity so that the star appears dimmer than it would be if there were no intervening materials. Termed extinction this effect can be estimated if the distance to the star and its position relative to galactic arms and molecular clouds is known. In general more distant stars suffer greater extinction or reduction in brightness than nearby stars. 

Extinction is inversely proportional to wavelength so red light is less affected than blue light. Distant stars thus appear redder than they actually are. This interstellar reddening must be compensated for in trying to determine the true color and brightness of a star. If a star's spectral and luminosity classes are known its absolute magnitude and color can be inferred. By measuring its apparent color the amount of reddening can be determined and this can then be used to determine an approximate distance to the star. Infrared and radio waves have even longer wavelengths than red visible light and can travel through the ISM relatively unimpeded hence they provide useful information about processes occurring within molecular clouds and galactic arms.

We term the difference between the observed and intrinsic color indices the color excess. So the distance modulus now becomes 
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(5.2)
where A is the total interstellar extinction. But A is hard to determine because it is a wavelength dependent and line of sight property of the interstellar medium. We can get some help from the fact that the interstellar medium scatters blue light more than red light, so star will appear redder than expected. That is, instead of the color index we expect, a star will have color excess. Consider the (B-V)o intrinsic color index for a star. Its apparent magnitude is 
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(5.3)
and its B apparent magnitude is
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(5.4)
Subtract these to find the observed color index
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(5.5)
Now 
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is the intrinsic color of a star and is equal to (B-V)o. Define the color excess as 
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(5.6)
We end up with
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(5.7)
The studies of the interstellar medium find that 
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(5.8)
Bolometric magnitude

Apparent and absolute magnitudes are measured by instruments sensitive to a small wavelength interval of the radiation continuum, such as the visual band: approximately 400 nm to 700 nm. However, magnitudes may be integrated over all wavelengths, when they are known as bolometric magnitudes. The apparent and absolute bolometric magnitudes are denoted (mbol) and (Mbol) respectively. 
Our Sun is the only star for which the total radiative flux per unit wavelength has been accurately observed.  Indeed, the total bolometric flux is related to the solar constant (the total solar radiative flux received at the Earth’s orbit outside our atmosphere – 1370 W/m2). The solar luminosity 
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is calculated from the solar constant in the following manner. Using the inverse-square law, we find the radiative flux at the Sun’s surface RSun. Then LSun is just 
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 times this flux. The solar energy distribution curve may be approximated by a Planck blackbody curve at the effective temperature Teff, defined as the temperature of a blackbody that would emit the same total energy as an emitting body, such as the Sun or a star. Then the Stefan-Boltzmann law implies
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(5.9)
where σ is the Stefan-Boltzmann constant.

If we know the absolute bolometric magnitude of a star, we can use Equation (3.2) to find that star’s luminosity:
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(5.10)
With
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(5.11)
Mbol (star) is not directly observed (although this is now becoming possible with satellites), but Lstar my be deduced by studying the star’s spectrum; then the absolute bolometric magnitude follows from Equation (5.10). The Sun’s luminosity and absolute magnitude provide a useful calibration of the magnitude scale.
In practice, we use the bolometric correction (BC), which is the difference between the bolometric and visual magnitudes, to determine a star is bolometric magnitude:
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(5.12)

Bolometric corrections are inferred from ground based observations by using theoretical stellar models; these corrections have been checked and improved with the ultraviolet data from orbiting satellites. In the UBV magnitude system, the bolometric correction is a minimum for stars with Teff = 6500 K; BC = -0.07 for our Sun. For stars with surface temperatures of 6700 K, the spectral energy peaks in the V wavelength band, so that greatest percentage of the star’s energy is detected.  For other stellar temperatures, a smaller percentage of the total radiative energy is measured in the V band; hence their bolometric corrections are larger than that for 6700 K stars. 

We now pull all these factors together to get




[image: image40.wmf])

/

log(

5

.

2

75

.

4

log

5

5

Sun

bol

V

V

bol

L

L

BC

A

d

m

M

-

=

+

-

-

+

=






(5.13)

We use the Sun to calibrate this relation, with its measured luminosity and a BC= -0.07. Then Mbol=0.0 corresponding to Lbol=3.04x1028 W, and mbol to  flux of 2.54x10-8 W/m2. For the UBV filters, the luminosities for an Mbol=0.0 star are 3.52x1027, 7.68x1027 and 3.68x1027 W. Finally, we convert these to flux densities, the flux per unit wavelength (or frequency): U= 4.34x10-12, B=6.60x10-12, and V=3.54x10-12W/m2 Å. Magnitudes have become physically meaningful units

Finally, a word of caution. The light we receive and measure from stars has been filtered many times before we record it: by the matter in interstellar space, by the Earth’s atmosphere, by the optics of our telescope, and by the detector and filters used. The goal of the observer is to correct for this filtration so that the light has the same characteristics as that just emitted by the star at its photosphere.



5.6 Metallicity

Red giants such as Betelgeuse are not actually that red in color. If you look at the color in table 5.3 above you can see that its actual color would be more orange than true red. A small group of stars do, however, appear deep red. These are the carbon stars such as 19 or TX Piscium. These ruby-red colored stars have high abundances of carbon molecules such as C2, CH and CN in their outer layers that absorb most of the photons in the blue and violet parts of the spectrum. Carbon stars were traditionally classified as R and N classes with similar temperatures to K and M stars respectively. Nowadays they are collectively referred to as type C (for Carbon).

___________________________________________________________________________________
Problem 1: The V magnitudes of two stars are both observed to be 7.5, but their blue magnitudes are B1 = 7.2 and B2 = 8.7.

(a) What is the color index of each star?

(b) Which star is the bluer and by what factor is it brighter at blue wavelengths than the other star?

Problem 2: What is the color index of a star at a distance of 150 pc with mV=7.55 and MB=2.0?

Problem 3: The bolometric correction for a star is -0.4, and its apparent visual magnitude is +3.5. Find its apparent bolometric magnitude.

Chapter 6
Photography in astronomy

6.1 Spectroscopic parallax

The term spectroscopic parallax is a misnomer as it actually has nothing to do with parallax. It is, however, a way to find the distance to stars. Most stars are too far away to have their distance measured directly using trigonometric parallax but by utilizing spectroscopy and photometry an approximate distance to them can be determined. Let us see how this works.

1. If we take a spectrum of a star we can determine: 

1. Its spectral class. 

2. Its luminosity class. 

2. Using photometry we can measure the apparent magnitude, m, mV or V for the star. 

3. If we use B and V filters we can also determine the blue apparent magnitude, B and thus determine the star's color index, CI = B - V. 

4. Knowing either the star's spectral class or color index allows us to place the star on a vertical line or band along a Hertzsprung-Russell Diagram. If we also know its luminosity class we can further constrain its position along this line that is we can distinguish between a red supergiant, giant or main sequence star for example. 

5. Once we know its position on the HR diagram we can infer what its absolute magnitude, M should be by either reading off across to the vertical scale of the HR diagram or looking it up from a reference table. A main sequence (luminosity class V) star with a color index of 0.0 (i.e. A0 V) has an absolute magnitude of +0.9 for example. 

6. Now knowing m from measurement and inferring M we can use the distance modulus equation: 
m - M = 5 log(d/10) (3.2)  to find the distance to the star, d, in parsecs. 

In practice this technique is not very precise in determining the distance to an individual star. Uncertainties in the absolute magnitude of stars of specific spectral and luminosity class range from about 0.7 up to 1.25 magnitudes. These then give a factor of 1.4 to 1.8 × variation in the resultant distance. Nonetheless it is still an important method for estimating distance to stars beyond direct trigonometric parallax measurement.

Example of Spectroscopic Parallax Calculation:
γ Crucis is an M3 III star with a measured value of mV = 1.63 and a color index of +1.60. This means that it is a red giant. Plotting its position on the HR diagram below we can estimate its absolute magnitude to be about -0.8. In fact if we look up a standard reference table we find the absolute magnitude for an III luminosity class star with a color index of +1.60 is -0.60.
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Gamma Crucis is an M3.5 III star, a red giant. Using its spectral and luminosity classes we can place it where the red circle is on the HR diagram. Reading across to the vertical axis this corresponds to an absolute magnitude of about -0.8.

Now if we use the tabulated value of M = -0.60 with the distance modulus equation (3.2) we have:

M = m - 5 log(d/10) 

(  5 log (d/10) = m - M 
(  log (d/10) = (m - M)/5 

d/10 = 10 (m - M)/5 

(  d/10 = 10 (m - M)/5 

(  d = 10*10 (m - M)/5 

this can be written as:
d = 10 (m - M + 5)/5 

now substituting in:

d = 10 (1.63 - (-0.60) + 5)/5 

(  d = 10 7.23/5 

(  d = 10 1.446 

d = 27.9 parsecs 

so &gamma Crucis is about 28 pc distant which is within 1 pc of the published Hipparcos value. If we used the graphically obtained estimate value of M ≈ -0.8 then:

d = 10 (1.63 - (-0.8) + 5)/5 

(  d = 10 7.43/5 

(  d = 10 1.486 

d = 30.6 parsecs 

so γ Crucis would have a value of about 31 pc distance, about a 15% error.

Although this method is not accurate for individual stars, if carried out for many stars it can yield statistically useful values. 

6.2 Photographic astronomy
6.2.1 Pre-photographic records
[image: image63.emf]Even before the invention of the telescope and photography, people recorded what they saw in the night sky. Babylonian clay tablets, dating almost 2700 years old that record lunar and planetary alignments still exist. Many archaeological sites such as some of the megalithic stone circles of north western Europe and the tomb at Newgrange in Ireland have astronomical alignments that suggest careful, long-term observations were made by their builders.

Galileo's telescopic drawing of a nebula in Orion, now known as Collinder 69. These early records have proved useful to modern astronomers. The Crab Nebula, M1, was found by Hubble and others to match the location of a bright daytime star recorded by Chinese astronomers in 1054 AD and is now known to be a supernova remnant. Other naked-eye observations such as that by Tycho Brahe in 1572 of a new star in Cassiopiea can also be matched with supernova remnants. The introduction of the telescope for astronomy by Galileo led to a dramatic increase in observations and records. The drawing at right from his book Sidereus nuncius shows a region near the head of Orion near the star 39 Lam Ori. This nebula is now known as Collinder 69. The realization that many more stars existed than were visible with the naked eye prompted the development of better and larger telescopes. Careful observation allowed skill observers to draw exquisite maps of the Moon and planets. Engraved plates allowed charts and drawings to be published and disseminated to a wider audience. 

William Herschel, discoverer of the planet Uranus, attempted to map the shape of the Milky Way by counting and plotting stars using his newly built 20 foot long reflector with an 18 inch mirror. His map can be seen below. Herschel's systematic attempts at classifying celestial objects together with his development of larger telescopes had a significant long-lasting influence. His observations of nebulae, fuzzy cloud-like objects, ignited passionate debate as to whether they were stars forming or some other phenomena. The resolution of this argument, however, would only come in the twentieth century with the application of photography on large reflecting telescopes.
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6.2.2 Photography in Astronomy

· Photographic Technology 

· Advantages and Disadvantages of Photography in Astronomy 

The earliest known photograph of an astronomical object, the Moon, was made by J. W. Draper in 1840. This was followed five years later by Foucault and Fizeau photographing the Sun from Paris. These early photographs were made using the daguerreotype process, a difficult and slow method using silver-coated copper plates. The long exposure times of about one minute required even for portrait photographs meant that any astronomical use was limited to only the very brightest objects. 

Sunspots were photographed by the amateur astronomer W. De la Rue using the new, faster "wet collodion" process in 1858. This technique still required a photographer to sensitize their own plates and expose them shortly after before they could dry out.

The invention of the dry gelatin emulsion in the late 1870s finally provided a safe, convenient method for photography. Its greater sensitivity allowed Jansen and Lockyer to photograph the spectral lines in the Sun's chromosphere and discover the element Helium. It was not isolated in a laboratory until 1895. The other key event in early astronomical photography was the photographs of the Great Nebula in Orion, M42, taken by the British amateur astronomer, Ainslee Common. His exposures lasted up to one hour and revealed stars that could not be seen by visual observation through a telescope. Photography became established as an essential tool of astronomers and led to a wealth of new discoveries.

[image: image43.jpg]Drawing of Eta Argus (now Eta Carinae)  Early Photograph of Eta Argus (now Eta Carinae)

Francis Abbot, 1871, Tasmania Henry Russell, 1891, Sydney Observatory




Comparison of a detailed drawing of η Carinae (then called η Argus) from telescopic observations by 
Francis Abbott from Tasmania in 1871 with an early astronomical photograph taken 
by Henry Russell from Sydney Observatory in 1891.

Astronomical photographic techniques continued to improve over the following century. As telescopes became larger they became much more sensitive. Observers such as Edwin Hubble using the Hooker 100 inch reflector on Mt Wilson was able to photographically record spectra of faint galaxies by making long exposures, sometimes over more than one night. His work led to the discovery of the expanding Universe and a resolution of the galaxy "island universe" debate. 

Post-World War Two specialized Schmidt telescopes, large purpose-built photographic instruments with wide fields of view such as that at Siding Spring were used to photograph the night sky systematically at two or three wavebands. This work was carried out by observatories in the northern and southern hemispheres to produce a whole sky survey. This survey has since been digitized and can be viewed online as the Digitized Sky Survey in red and blue at SkyView.

Astrophotography reached its peak in the 1970s and 1980s. Techniques such as unsharp masking and photographic amplification used by people such as David Malin at the AAO allowed ever finer detail to be resolved. Three black and white exposures through cyan, yellow and magenta, cyan and magenta filters can be combined to produce stunning color images such as the one of η Carinae below. Publication of these images did much to excite the public about astronomy. Whilst still valuable for professionals, most professional astrophotographs were taken as black and white images, not color.

[image: image44.jpg]© Anglo-Australlan Obs/Royal Obs. Edinburgh




η Carinae showing the emission nebulae in color. This photograph was made by David Malin using plates 
taken on the UK Schmidt Telescope at Siding Spring in NSW. Compare it with 
Henry Russell's 1891 photograph above of the same object.

Photographic Technology

Photography works due to a photochemical reaction between incident light (photons) and the emulsion or film the photons land on. In professional astronomy the emulsion is normally on a glass plate rather than on more flexible acetate or polyester film. Glass plates do not are more stable than early generations of cellulose nitrate and acetate-based film and are more rigid so cannot wrinkle like film. This is essential for accurate astrometric measurements. Eastman Kodak developed emulsions such as IIIaJ, specifically for professional astronomical use. In astrophotography, the telescope replaces the lens of a normal camera.

A photographic plate is coated with a photographic emulsion comprising small silver halide crystals suspended in gelatin. Eastman Kodak developed emulsions such as IIIaJ, specifically for professional astronomical use. Incident photons can be absorbed by electrons in the valence band of silver halide molecules. The subsequent movement of electrons into the conduction band creates positive holes in the valence band. Slight impurities in the silver halides act as traps, immobilizing the electrons to prevent them recombine with holes. Silver ions can then be neutralized by these immobile electrons, forming silver atoms. These in turn then capture other conduction electrons and ions in turn. What starts as a single silver atom can grow too few hundred pure silver atoms within a silver halide crystal. These specks of silver act as catalysts during the developing process so that the surrounding silver halide is rapidly reduced to pure silver. 

The photographic process is therefore a chemical reaction. In normal photography the image produced is a negative which then needs to be printed as a positive image. Astronomers tend to work directly with the negative images for several reasons; to reduce chances of further errors, to maximize the image quality and often because it is easier to pick out a faint black object on a clear or white background than vice versa. Some cruel people also suggest that astronomers' dandruff falling on a positive image could be mistaken for stars!

Advantages of Photography in Astronomy

1. Wide Field of View. Schmidt telescopes can cover a wide field of view, the UK Schmidt Telescope for instance covers a 6° × 6° field on a single plate. A survey plate from such an instrument can contain many thousands of discrete sources such as star. 

2. Resolution: There are many millions of silver halide crystals on a single plate. A plate has far higher resolution than a CCD chip of the same area. Even a coarse-grained 35mm film has the equivalent of 25 million pixels whilst fine-grained astronomical emulsions have even more. 

Disadvantages of Photography in Astronomy

1. Low Quantum Efficiency: Quantum efficiency, QE, is a measure of how efficient a detector is at converting incident photons into a useful signal. Photographic emulsions have low quantum efficiency, at best about 3% for the specialized astronomical emulsion IIIaJ. This means that of 100 photons that hit a plate, only three trigger a photochemical reaction that results in a silver atom forming. 

2. Long Exposure Times: These result directly from the low quantum efficiency of emulsions. The less, efficient, the longer the emulsion must be exposed to gather the faint light. This then reduces the number of exposures that can be made on any given night. It also introduces another problem that emulsions have - reciprocity failure. 

3. Reciprocity Failure: This refers to the fact that the "speed" of a photographic emulsion decreases with increasing exposure time. It thus becomes even less sensitive as a long exposure continues. More pronounced in color than monochromatic emulsions it is one reason why professional astrophotography uses black and white emulsions. 

4. Non-Linear Color Sensitivity: Most films and emulsions are more sensitive to blue light than longer wavelength (hence lower frequency and energy) red light. This tends to mean that hot blue sources appear brighter than true values and cool red sources less bright than actual values when photographed. Of course astronomers use filters and can adjust for this but it is a complicating factor. 

5. Hypersensitising and Developing: Hypersensitising involves baking a plate at a specified temperature then soaking it in Nitrogen gas then Hydrogen gas for several hours. This process significantly improves the sensitivity of the emulsion, sometimes up to a quantum efficiency of 10%, justifying the time, expense and risk. The problem is that this process requires careful planning as to when plates will be used as once hypersensitised they must be used and developed within a few hours. In general, astronomical plates should be developed soon after exposure, normally on the same night. This is another burden on the astronomer's time and also imposes the need for suitable dark room facilities and materials. 

6. Storage: Glass plates are fragile, heavy and take up space. They must be stored under cool, dry, dark conditions for long-term stability. This imposes costs on observatories. 

7. Digitization of Plates: Given that plates are heavy and fragile they are not easily accessible to a wide range of users. Fortunately they can be scanned into a digital form using special machines such as Super COSMOS, a microdensitiometer in Edinburgh. Plate-scanning machines produce high resolution images but are expensive, slow and require expertise in their use. 

8. Cost & Availability of Plates: Individual plates are expensive (a 30 cm × 30 cm plate cost about US$100 in 1996) and can only be used once. Poor exposures or weather can ruin a plate. As the professional market for specialized astronomical emulsions is so small and with the rapid and widespread adoption of CCDs for professional astronomy, Eastman Kodak phased out production of emulsions such as IIIaJ in the late 1990s. 
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Digitized Super COSMOS image of a section of a plate from taken on the UK Schmidt Telescope 
Southern Sky Survey. The image is 10 arc minutes wide.

Nowadays most professional observatories have phased out their photographic programs and systems. Probably more than 98% of professional astronomy now involves the use of photoelectric detectors such as CCDs. These are discussed in the next section. 

6.3 Photoelectric astronomy 
The development of semiconductor technologies in the second half of the twentieth century led to exciting new detector technologies such as photomultiplier tubes and charged-couple devices (CCDs). These devices utilize the photoelectric effect to convert incident photons into a charge that can then be measured and recorded. CCDs have revolutionized astronomy in the last two decades, virtually replacing photography in professional astronomy. The sensitivity and power of CCDs has also seen them adopted by keen amateur astronomers whose backyard telescopes can now image objects once only obtainable on long photographic exposures on the world's largest telescopes.

6.3.1 Photomultiplier Tubes

An electron multiplier phototube, more commonly known as a photomultiplier tube (PMT) or simply phototube is designed to convert faint incoming light into an amplified electrical signal. The incident photons hit a photocathode made of a semi conducting photoemissive material such as gallium arsenide, dislodging electrons due to the photoelectric effect. These electrons are then accelerated down the evacuated tube by a series of positively-charged electrodes or dynodes at increasingly high electric potentials. At each electrode additional electrons are knocked out and are thus free to travel down the tube. The net effect is that a single electron dislodged by one photon from the original cathode ends up as a signal of 106 electrons at the final electrode where the signal is measured. 

Photomultiplier tubes are therefore extremely useful amplifiers of weak signals. They can reach quantum efficiencies of up to about 20%, much higher than photographic emulsions. Another advantage they have is that their response is linear. This means that if you had double the number of incident photons you would have double the output signal. Photographic emulsions have a non-linear response. 

By itself a photomultiplier tube can only measure the flux of incoming radiation. This makes it suitable for photometry where by using filters astronomers can measure the flux of a star at specific wavebands. With careful use photomultipliers can achieve photometric accuracy of about 1% (a difference of 0.01 magnitudes) but they are prone to interference from electric and magnetic fields and cosmic rays. 

Photomultiplier tubes have largely been supplanted by CCDs as detectors on optical telescopes but they are still extremely useful in cosmic ray and neutrino detector arrays. Super-Kamiokande, a neutrino observatory buried deep within a mine in Japan uses 11,200 photomultiplier tubes each 50 cm in diameter, the largest tubes in the world. They are immersed in 50,000 tons of pure water and detect the faint blue glow of Cerenkov radiation. This is the radiation emitted by particles such as neutrinos that travel faster than the speed of light in a dense medium such as water. The photomultiplier tubes can amplify the signal of the Cerenkov radiation. They also measure the arrival time of individual signals very accurately so that the signal detected by multiple tubes can be analyzed by coincidence timing to plot the trajectory of the incoming particle that caused the Carencro radiation. 
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The interior of Super-Kamiokande during the filling of the tank with 50,000 tons of pure water. Note the people in the raft on the right-hand side of the photo. They are next to some of the 11,200 50 cm photomultiplier tubes that detect the Cerenkov radiation from neutrinos.

Super-Kamiokande's predecessor, Kamiokande, detected a flux of a few neutrinos from Supernova 1987a, the first definitive detection of neutrinos form a celestial source other than our Sun. Studies of solar neutrinos has provided an important test of models of nuclear reactions within the core. The Sudbury-Neutrino Observatory, SNO, another facility studying solar neutrinos is buried over 2 km deep in a mine in Canada. It, too uses photomultiplier tubes. The study of neutrinos and high-energy cosmic rays are examples of particle astrophysics, a branch of astronomy that is not reliant on electromagnetic radiation from the source.

6.3.2 Charged-Couple Devices (CCDs)

Originally conceived of as a memory module charged-couple devices or CCDs were soon adapted for other applications such as imaging. NASA's Jet Propulsion Laboratory took the first astronomical CCD image of Uranus in 1975. Since then the technology has been refined and come to dominate professional astronomical applications of imaging, spectroscopy, photometry and astrometry. Almost all professional observatories now employ CCD detectors where the may previously have used photography or photomultiplier tubes. Equally exciting has been the spread of powerful but affordable CCD cameras to the amateur astronomical community. Enthusiastic amateurs now have the ability using backyard telescopes to detect objects as faint as those at the limit of long photographic exposures on the world's largest telescopes only a few decades ago.

Apart from revolutionizing astronomy CCDs are also widely used in other applications. The vast majority of digital cameras and digital video cameras around the world have a CCD as their detector (others use the related CMOS technology).

How CCDs Work

A CCD in basic terms is a thin sliver of a semiconducting material such as silicon arranged in a two-dimensional array of picture elements or pixels that use the photoelectric effect. If a photon of light hits a pixel the photoelectric effect causes an electron-hole pair to form. A small electrode can trap the electron in a potential well. As more photons hit the pixel, more pairs are formed and more electrons can be trapped in the well so that the total charge accumulates. Once the exposure is finished the charge in the well can be read out and the pixel reset ready for another exposure.
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Kodak KAF-4301E 4.3 million pixel CCD with 24 μm square pixels. This chip has enhanced blue sensitivity and improved quantum efficiency across the visible waveband.

If we had a single-pixel CCD then it could measure flux from a source, much like a photomultiplier tube. CCDs however have a large number of pixels in a two-dimensional array. By reading out the charge in each pixel separately and matching it with its location spatial information is also obtained. The information is downloaded directly into a computer where it can be stored on disk and analyzed using image analysis and processing software.

One common analogy used to describe the method of accumulating light and reading out charge is to consider a CCD as a series of buckets on a number of side-by-side conveyor belts. As it rains the buckets fill up with water but different buckets have different amounts of water in them. Once the exposure is finished (or the shower has passed), the first conveyor belt moves, emptying each bucket on it out in turn into a trough that runs to a measuring vessel. Once each bucket from the first belt has its amount of water measured the second conveyor belt moves, emptying buckets in turn, then the third and so on. The amount of water in a bucket in analogous to the charge a CCD pixel contains at the end of an exposure. If a bucket gets filled up with water then some of it can spill out to the surrounding area. This too reflects what can happen on some types of CCD when the potential well fills up with the maximum amount of charge. Excess charge causes streaks (called blooming) on the read out signal. An example of this is when a CCD image is overexposed by a bright star. 
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A CCD image showing galaxies, a supernova, blooming from bright stars and a close up of a star showing the pixels. The bright stars also have diffraction spikes due to the telescope optics.

Advantages of CCDs for Astronomy

1. High Quantum Efficiency: Astronomical CCDs can reach peak quantum efficiencies of greater than 90%. This means that nine out of ten photons hitting a pixel form an electron-hole pair that can be detected and counted. Equally important is that CCDs have high quantum efficiency across a wide waveband. A back-illuminated CCD for instance has QE > 60% for more a 500 nm waveband. CCDs are far more sensitive than either photographic emulsion of photomultiplier tubes. This means that they are much "faster" than photographic emulsions so that the same length exposure will reveal far fainter sources than a photograph. Shorter exposures therefore can often be used so that many more fields can be imaged in a single observing session. 
The plot below compares the quantum efficiencies of different types of astronomical CCDs.
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Plot comparing the quantum efficiencies of different types of CCDs used in astronomy.
2. Broad Spectral Response: Early generation CCDs were sensitive in the red part of the spectrum but less so in the blue or ultraviolet regions. Improved technology means that current chips have a broader spectral response.
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Kodak-16801E 16.8 million pixels CCD. This large professional-grade chip has extremely high resolution, low noise and a large dynamic range making it suited to astronomy.
3. Large Dynamic Range: CCDs have a very large dynamic range. This is basically the range between the lowest and highest charge values that can be detected in a well. CCDs may have a dynamic range with a factor of 100,000 × compared with only 100 × that is typical for photographic emulsions. They are thus useful for imaging astronomical objects where there is naturally a large dynamic range in the sources. 

4. Linear Response: If a CCD pixel receives twice the number of photons than another pixel, it will have double the amount of charge than the first pixel. the number of electrons in a pixel therefore is proportional to the number of incident photons to within about 0.1%. 

5. Low Noise: As with any semiconductor material, the silicon in CCDs produces random "noise" due to thermal vibrations. This noise can degrade a signal. Fortunately modern CCDs are designed to produce very low levels of noise that can then be accounted for in subsequent analysis. One way of reducing noise is to cool the CCD chip - the cooler it is the less vibration in the atoms. Cooling can be thermoelectric (e.g. Peltier cooling) and/or by using cryogenic materials such as liquid nitrogen. 

6. Stable: CCDs are physically very stable. They do not expand or warp due to thermal or mechanical changes. The actual photosensitive chip is normally encased in a protective enclosure. 

7. Digital Readout: The information obtained in a CCD exposure is directly readout into a computer or digital storage device at the end of the exposure. This means that analysis can start straight away without the need for developing a plate as photography requires. It also avoids the need for scanning and digitizing plates. The CCD data can be easily backed up on tape or disk and even transmitted via the Internet. 
Problems with CCDs for Astronomy

The many advantages of CCDs ensured their rapid acceptance by the professional astronomy community. Although they are now the main detector used in optical astronomy they do have some disadvantages. 

1. Small Size and Field of View: Initially CCDs were quite small, a 512 × 512 pixel CCD with a total of 262,144 pixels was considered large. The problem with such small area detectors is that they give a very small field of view, much smaller than a photographic plate achieved on the same telescope. As manufacturing techniques have improved and the cost per pixel decreased, CCDs have grown in size. 1024 × 1024 pixels are now standard whilst chips with 4096 × 4096 (that is 16.8 million) pixels now exist. Nonetheless the field of view is still smaller than photographic systems. To try and get around this some observatories use several CCDs mosaiced together to give a much larger field of view.   One example of this is the wide-field imager, MegaCam which consists of 40 2048 x 4612 pixel CCDs (a total of 340 mega pixels). This covers a full 1° × 1° field-of-view with a resolution of 0.187 arc second per pixel and makes the most of the 0.7 arc second median seeing at Mauna Kea. Mega Cam sits at the prime focus of the CFHT, the Canada-France Hawaii telescope, a 3.6 m optical telescope in Hawaii. 

2. Cost: Professional-grade CCD chips are expensive. The cost per pixel has decreased significantly since their introduction but the chips used for professional astronomical CCD cameras have much higher specification levels and finer tolerances than those used in many commercial cameras. 

3. Calibration: In order to extract the information accurately and fully from a CCD images many calibration and adjustment steps are required. Additional frames or exposures such as flat-fields and dark frames must be taken and accurately logged. A CCD's performance also changes with temperature so this needs to be accounted for. 

4. Cooling: To minimize noise on an astronomical image a CCD chip must be cooled. If this involves cryogenic materials such as liquid nitrogen this must be added to the camera well in advance of observing to allow sufficient time for it to cool down. Care must also be taken to ensure the camera stays cooled. 
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Jon Morse (University of Colorado), and NASA
A close up image of η Carinae taken by the HST using a CCD. The expanding, ejected bipolar shell of gas can be clearly seen. Compare this image with the drawings and photographs of the same object at a wider field of view on the previous page.
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The CCD image of the discovery of Supernova 1998cs taken by Tim Puckett on a 30cm telescope using an Apogee CCD camera and a 60 second exposure. The supernova is clearly visible in the plane of galaxy UGC 10432. This image illustrates the efficiency of CCDs in astronomy. A 30cm on a good mount with quality optics and a CCD camera can now match the photographic magnitude limit of the 200 inch Hale Reflector on Mt Palomar in the 1950s.

[image: image53.png]Besides the chemistry aspect of Bunsen and Kirchoffs work, Kirchoff himself pro-
duced three laws, now known as Kirchoff’s laws which were very much to do with the
physics of spectra. These laws stated that spectra came in three and only three types,
depending on the conditions in which they were produced:

* Continuous—basically a rainbow of colours. This kind of spectrum is produced by
ahot incandescent solid or a dense gas. A hot liquid such as molten iron would also
produce a continuous spectrum.

* Emission—isolated bright lines at different wavelengths seen against an otherwise
dark background. This kind of spectrum is produced by a hot incandescent thin or
low-density gas. The pattern of these emission lines is determined by the chemical
nature of the gas producing it.

« Absorption—a continuous spectrum with superimposed dark lines. This spectrum,
the sort produced by most stars results from relatively cool thin gas situated between
the source of the continuous spectrum and the observer. The pattern of dark lines
or absorption lines is again determined by the chemical nature of the intervening
cool gas.
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