
Simplifying Algorithm Learning Using Serious Games

Sahar Shabanah
George Mason University

4400 University Dr.
Fairfax, VA 22033, USA
sshaban1@gmu.edu

Dr. Jim X. Chen
George Mason University

4400 University Dr.
Fairfax, VA 22033,USA

jchen@gmu.edu

ABSTRACT
Algorithm Visualization using Serious Games (AVuSG) is
an algorithm learning and visualization approach that uses
serious computer games to teach algorithms. It visualizes an
algorithm to be learned in four forms: a text, a flowchart, a
game demo, and a game. Moreover, (AVuSG) method inte-
grates learning theories and models in addition to motiva-
tion theory to introduce three learning models that simplify
algorithm learning.

Categories and Subject Descriptors
L.5.1 [SIMULATION/GAMES]: Game Based Learning;
I.6.8 [Gaming]: Simulation and Modeling

Keywords
Serious games, algorithm visualization, algorithm learning

General Terms
Learning Theories, Game Engine, Algorithm Visualization

1. INTRODUCTION
Data structures and algorithms are important foundation

topics in computer science education. Students deal with
algorithms in many computer science courses. For instance,
in computer graphics, students learn objects rendering al-
gorithms, in networking, they study algorithms that solve
networks traffic congestion, and in database, they learn al-
gorithms that search or sort data. Accordingly, teaching
algorithms is a common activity that takes place in many
computer science classes. However, algorithms are often
hard to understand because they usually model complicated
concepts, refer to abstract mathematical notions, describe
complex dynamic changes in data structures, or solve rela-
tively difficult problems. Consequently, teaching algorithms
is a challenging task that faces instructors and requires a
lot of explaining and illustrating. Therefore, teaching aids

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WCCCE ’09 Vancouver, British Columbia, CANADA
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

other than chalkboard and viewgraph are needed to help stu-
dents understand algorithms better [1]. The human ability
to realize graphic representations faster than textual rep-
resentations led to the idea of using graphical artifacts to
describe the behavior of algorithms to learners that have
been identified as algorithm visualization [9].

Motivation. Educational Computer Games are computer
games that involve learning of certain knowledge [31]. De-
spite the frustration with educational computer games in
the past, they reemerged recently as Serious Games. Seri-
ous games are computer games that have been developed for
serious purposes other than entertainment such as training,
advertising, simulation, and education. Since 2001, there
have been several researches related to serious games such
as the Games To Teach [19] and The Making Games [25]
projects. The following features of computer games qualify
them to be used for education in general and for algorithm
learning in particular:

• Computer games are popular. Computer games
have been broadly played all over the world by adoles-
cents and young adults. In particular, the number of
hours the standard college students spend on reading
is half the time that they spend on playing computer
games [26]. Therefore, the best method for teaching
today students is to use computer games.

• Computer games are interactive. Computer games
fully interact with players and encourage them to think
and act. Thus, the use of computer games will im-
prove algorithm learning since there is an increasing
correlation between algorithm learning and the level
of students’ engagement [13].

• Computer games are competitive. A computer
game player spends many hours in learning and play-
ing the game. The motivation of the player to spend
all that time with the computer game aroused from
the game itself (Intrinsic Motivation) and not from
an external incentive. Intrinsic Motivation improves
learning as research shows [21].

• Computer games simplify assessment. To win a
computer game, the player must understand its rules
very well. Therefore, students understanding of the
algorithms can be assessed using the winning/losing
criteria of computer games that simulate the behavior
of those algorithms.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WCCCE’09, May 1-2, 2009, Burnaby, BC, Canada.
Copyright 2009 ACM 978-1-60558-415-7...$5.00.

• Computer games utilize entertainment. The use
of computer games converts the unpleasant and te-
dious operation of algorithm learning into an enjoyable
and interesting experience.

This paper introduces a new algorithm visualization method,
namely Algorithm Visualization using Serious Games (AVuSG)
that uses learning theories and serious computer games to
simplify algorithm learning. The main part of this paper is
divided into three sections. Section 2 describes related work.
Section 3 explains the conceptual framework of (AVuSG)
method, section 4 describes the (AVuSG) systems design,
section 5 illustrates the algorithm game design, and section
6 describes three algorithm games prototypes.

2. RELATED WORK
SOS (1981) video was the first recognized algorithm vi-

sualization system. It uses animation, color, and sound to
explain three sorting algorithms: insertion, exchange, and
selection sorts [2]. However, BALSA (1984) was the first
real-time, interactive algorithm visualization system, it al-
lows the user to start, stop, or even run an algorithm back-
ward [5]. Algorithm Explorer (2007) is an algorithm vi-
sualization system that uses three-dimensional objects to
represent common data structures and animations to visu-
alize algorithms. Its user interface allows the user to control
how the visualization played and displayed on the screen
[7]. SOS allows learners to view the visualization passively
while BALSA and Algorithm Explorer provide the user with
some kind of control over the visualization viewing process.
Viewing is the most form of engagement that existing al-
gorithm visualization systems provide for their users, other
less supported engagement forms are responding, changing,
constructing, and presenting [23]. MatrixPro (2004) is a vi-
sualization system that supports responding by asking view-
ers to answer questions related to the presented visualiza-
tion. It uses a server called Trakla2 (2003) to automatically
generate algorithm exercises and assess students returned
answers [20]. JHAVE (2005) adds a responding support for
a variety of algorithm visualization systems by providing
stop-and-think questions [22]. Some algorithm visualization
systems allow their viewers to change the visualization data
or some other features. For example, GeoWin (2002) is a
visualization system that allows the user to manipulate a
set of actual geometric objects through the interactive in-
terface [3]. Other system is CATAI (2002), which enables
the user to invoke some methods on the running algorithm.
In terms of method invocations, it is possible directly to
access the content of the data structures or to execute a
piece of code encapsulated in an ordinary method call [11].
ANIMAL (2002) supports constructing by enabling users
to visualize algorithms through the composition of low-level
drawings and the animation operations, but not on the ab-
stract data types represented in the animation [27]. ALVIS
(2004) is an interactive environment that enables students
to quickly construct rough, unpolished (low fidelity) visual-
izations, and interactively present those visualizations to an
audience. Its successor is ALVIS-Live! (2005) that reeval-
uates an algorithm line on every edit to update its visual-
ization dynamically [18]. A project called Algorithm Studio
(2004) supports presenting by allowing students to present
their visualizations to their instructors in one-to-one sessions
then to the entire studio. Finally, at the end of the semester,

Figure 1: Bloom Based Model

the students must present their solutions for an extra set of
design problems to a jury of instructors [16].

Some researchers found that there is no significant dif-
ference in educational outcomes between students who use
visualizations and those who do not [6] [17]. Moreover, in
a recent effort to build a wiki for existing algorithm visual-
ization systems, Shaffer et al. searched and analyzed hun-
dreds of visualization systems and found that �most exist-
ing algorithm visualization systems are of low quality, and
the content coverage is skewed heavily toward easier top-
ics [29].�However, researchers remain positive about visu-
alizations in general as Shaffer et al. states �while many
good algorithm visualization systems are available, the need
for more and higher quality visualization systems continues.
There are many topics for which no satisfactory visualiza-
tion systems are available. Yet, there seems to be less ac-
tivity in terms of creating new visualization systems now
than at any time within the past ten years [29].�The focus
on graphics and sound instead of teaching aspects in the de-
sign of many algorithm visualization systems is responsible
for their failing to be effective in teaching algorithms [30].
Other reason is the lack of features that encourage students’
engagement with the displayed visualization [28]. Neverthe-
less, researchers identified the level of students’ engagement
as the most effective factor in the success of any algorithm
visualization system since there is an increasing correlation
between learning and the level of students’ involvement with
the visualization [13].

Algorithm Visualization using Serious Games (AVuSG)
addresses the shortness in current algorithm visualization
techniques by integrating learning theories and models in
algorithm learning. Moreover, by visualizing algorithms as
computer games, (AVuSG) introduces �playing�as a new
engagement form that maximally engages students in the
learning process.

3. (AVUSG) CONCEPTUAL FRAMEWORK
(AVuSG) framework consists of three parts: the Algo-

rithm Representation Forms, the Learning Processes, and
the Learning Models.

3.1 Algorithm Representation Forms
(AVuSG) produces four forms of representations or visu-

alizations for the algorithm to be learned:

1. The Algorithm Text: a description of the algorithm
steps that shows its basic idea and how it works.

2. The Algorithm Flowchart: a graph depicting the
static visualization of the algorithm functionality.

Figure 2: Gagne Based Model

3. The Algorithm Game Demonstration: a dynamic
visualization of the algorithm operations using the self-
running demo of the algorithm game.

4. The Algorithm Game: an educational computer
game with a game-play that simulates the behavior
of the algorithm and graphics depict the features of its
data structure.

3.2 Learning Processes
(AVuSG) defines three learning processes for learners to

engage with any produced algorithm representation form:

1. The Viewing Process: in this process, the learner
views the algorithm text, flowchart, and game demo.

2. The Playing Process: in this process, the learner
plays the algorithm game.

3. The Designing Process: in this process, the learner
develops the algorithm text, flowchart, game, and its
demo.

3.3 Learning Models
(AVuSG) introduces three learning models that can be

adopted either by students to learn the algorithm or by the
instructors to teach the algorithm depending on the learning
objectives that they want to achieve.

3.3.1 The Bloom Based Model
By applying this model (Figure 1), the learning objectives

of Bloom Taxonomy (A.2.1) can be achieved as follows:

1. The learning starts in the viewing process, where learn-
ers watch the algorithm text to build their knowledge

2. Then, learners view the algorithm flowchart and game
demo to comprehend how the algorithm works.

3. Next, in the playing process, learners apply their knowl-
edge of the algorithm to play the algorithm game.

4. The game playing is divided into several game moves;
each move simulates one algorithm step. During game
playing, learners first analyze the algorithm into its
steps to win each game move then synthesize all moves
to win the whole game.

5. Learners can easily evaluate the speed, complexity, and
efficiency of an algorithm by playing its related game.
For example, if the game is hard to win, this means
the algorithm is complex. Also, if the game data is
not large this means the algorithm is suitable for small
size data and so on.

Figure 3: Constructivist Model

6. As an optional and for more learning outcome. In the
design process, learners analyze the algorithm and its
played game to synthesize a new algorithm game de-
sign. Then, learners evaluate their designs for the new
algorithm game.

3.3.2 The Gagne Based Model
The steps of this model (Figure 2) simulates the events of

Gagne model of instruction (A.2.2) as follows:

1. The learning starts by playing the algorithm game that
was created by the instructor, to gain the learners at-
tention and activate their motivation. If lost the game,
learners are provided with guidance through algorithm
game demo. The playing process builds and stimulates
the required prerequisite information related to the al-
gorithm.

2. After winning the game, the learners are presented
with the algorithm text and flowchart in the viewing
process to learn the algorithm.

3. Eliciting and assessing the performance of learners can
be achieved using the winning/losing criteria of the
algorithm game.

4. Promoting retention and transfer can be acquired in
the playing process.

3.3.3 The Constructivist Model
A description of this model (Figure 3) is as follows:

1. Learners start learning by viewing the algorithm text
to have an idea about how the algorithm works.

2. Then, learners go to the designing process to design
the flowchart of the algorithm.

3. If succeeded in building the flowchart, learners can
start to design and develop their own algorithm games.

4. However, if learners fail any of these processes, they
always can watch the algorithm flowchart, game demo,
and play the algorithm game that has been built by
their instructors.

The model deploys the constructivist theory (A.1.3) to affect
learning in three ways:

1. Curriculum: for the same algorithm, each student builds
his own algorithm game and flowchart using his prior
knowledge.

Figure 4: Serious-AV
Main

Figure 5: Algorithm
Text Designer

2. Instruction: students analyze, interpret, and predict
information about the algorithm to design its flowchart
and game.

3. Assessment: students learn the algorithm by playing
its game and judge their own progress through the win-
ning/losing criteria of the game. Therefore, the assess-
ment becomes part of the learning process.

4. (AVUSG) SOFTWARE SYSTEMS
Serious Algorithm Game Visualizer (Serious-AV) (Figure

4) is a visualization system that has been designed and de-
veloped to demonstrate (AVuSG) framework by providing
several viewers and designers.

4.1 (Serious-AV) Viewers
(Serious-AV) supports the viewing and the playing learn-

ing processes by providing three viewers to enable the learner
to view the algorithm text, flowchart, game demo, and game.

4.1.1 The Algorithm Text Viewer
A Windows Form that shows the algorithm text to the

learner. It provides the learner with many options to ma-
nipulate the algorithm text such as copy, cut, paste, and
print features.

4.1.2 The Algorithm Flowchart Viewer
A Windows Form that presents the algorithm flowchart

to the learner. It provides the learner with many options to
manipulate the algorithm flowchart such as copy, cut, paste,
and print features.

4.1.3 The Algorithm Game Viewer
An XNA Window that displays the algorithm game to

the learner to play the previously built game or watch its
self-running demo.

4.2 (Serious-AV) Designers
(Serious-AV) supports the designing process by providing

three types of designers for designing each form of the algo-
rithm forms.

4.2.1 The Algorithm Text Designer
A Windows Form Application that simplifies the creation

of the algorithm text by providing: a Text Editor to write
the algorithm text, a File menu to save, open, and export
the algorithm text to the Algorithm Text Viewer, and a
Format menu to format the font; an Editing menu to cut,
copy, paste, and delete the text (Figure 5).

Figure 6: Algorithm
Flowchart Designer

Figure 7: Algorithm
Game Designer

4.2.2 The Algorithm Flowchart Designer
A Windows Form Application that simplifies the creation

of the algorithm flowchart by providing: a Graphics Editor
with a flowchart toolbox that has a set of drag-and-drop
flowchart shapes, a File Menu to save, open, and export the
flowchart to the Algorithm Flowchart Viewer, and an Edit-
ing Menu to copy, paste, move, resize, and delete a flowchart
shape (Figure 6).

4.2.3 The Algorithm Game Designer
A Visual Studio Shell (Isolated Mode) that simplifies the

development of an algorithm game and its demo by provid-
ing the following components (Figure 7):

• Code Editor: the main editor to develop the algorithm
game using XNA framework and C# language.

• Script Editor: an editor to write game-specific script
code that features IntelliSense-like programmer assis-
tance.

• Developer Graphics Editors: four editors that support
the creation of different components of an algorithm
game using a flexible and user-friendly graphical user
interface. The Properties (Figure 8) and Assets Edi-
tors (Figure 9) are both Windows Form Applications
to enter the game properties such as Number of Lives
and to load the game assets such as fonts, textures,
and models. The Graphics Items and Game Screens
Editors are both XNA Applications to support the cre-
ation of game graphics items and the game screens.

• The Algorithm Game Template: a blueprint for the
creation of a new algorithm game.

• Serious Algorithm Visualization Game Engine (SAV-
GEngine): an XNA library that provides the new algo-
rithm game by many useful components such as Play
and Base game classes to handle the timing, loading,
and rendering operations; basic game operations mod-
ules such as graphics, sound, input, physics, script,
and game screens managers; and a Repository that
has ready-to-use algorithm game components to be
plugged-in into the new game.

5. ALGORITHM GAME DESIGN
The algorithm game features 2D and 3D representations

of common data structures, a game-play that simulates the
visualized algorithm operations, and sound effects that re-
inforce the game events. Any algorithm that has specific

Figure 8: Properties Edit. Figure 9: Assets Editor

steps and a data structure can be visualized as an algorithm
game. To create an algorithm game, the designer can either
design a totally new game or modify the game-play of an
existing game to simulate the algorithm steps. For exam-
ple, the Binary Search Game (6.1) is created by modifying a
known game called Pong to simulate the binary search algo-
rithm. To simplify the development of algorithm games, for
both the instructors and the students, they have been devel-
oped as XNA games. Since the Microsoft XNA Framework
is a set of managed libraries based on the Microsoft .NET
Framework that are designed for simplifying game creation
for students and hobbyists. Moreover, the Algorithm Game
Designer 4.2 has been designed to help in the design and
the development of the algorithm games with as less code as
possible.

5.1 Algorithm Game Motivation
Motivation theory (A.3) defines several guidelines that can

be used to design algorithm games with internal motivation.
First, the algorithm game should challenge the player by set-
ting clear goals with appropriate difficulty levels and giving
encouraging feedback. The information in the game should
be complex and unknown to increase the player curiosity
and imagination. The game must give the most control to
the player by providing many customizing options. More-
over, it should encourage competition, collaboration and the
recognition of peers.

5.2 Algorithm Game Design Elements
The following design elements [24] have been used to de-

scribe each algorithm game prototype:

• The Game Idea describes the game main goal and
topic.

• The Game Start describes the game start up screen
components.

• The Game Levels describes how the difficulty increases,
how a level ends. Each completed level must achieve
a learning sub-goal.

• The Game Milestone Events are points of the game at
which the player rewarded or penalized.

• End of the Game explains what happens when the
player loses, wins, or gets a high score.

• Game User Interface:

– The Game Input is the player’s contact with the
game such as keyboard, mouse, and Xbox game-
pad.

Figure 10: Binary Search- Play Screen

– The Game Graphics are everything that contributes
to the visual appearance of the game. The algo-
rithm game graphics must depict the character-
istics of its data structure, for example a block
can be used to visualize one element of a data
structure, while a set of blocks used to visualize
an array.

– The Game Sounds are either musical sounds that
play at game goal events or sound effects that play
at other game events.

– The Game Screen is a collection of visual and
audio components that describe the state of the
game at any one time during the game life cy-
cle. The basic game screens of every algorithm
game are Title, Main Menu, Play, Won, and Lost
screens.

• The Game Play explains how the game will be played
and simulates the functionality of the algorithm.

6. ALGORITHM GAME PROTOTYPES
To explain how an algorithm game can be constructed

for a given algorithm, three algorithm games prototypes are
described.

6.1 Binary Search Game Prototype
The binary search algorithm finds the index of a specific

value in a sequential list of sorted elements (array) as follows:
it selects the middle element (median) of a sorted list and
compares it with the (target value),

• if (median) > (target value), the middle element (index
- 1) becomes the new upper bound of the list,

• else if (median) < (target value), the middle element
(index + 1) becomes the new lower bound,

• else if (median) = (target value) then return the index
of the middle element.

Then, it pursues this strategy iteratively for the new list
bounded by the middle element; it reduces the search span
by a factor of two each time, and soon finds the target value
or else determines that it is not in the list.

6.1.1 Game Design Elements
� The main idea of the game is hitting an array of blocks

with a ball using a paddle. The game is a mod of the Pong
game.
� The game starts by displaying one game level that in-

cludes a group of blocks with their values hidden, a ball, a
paddle, the Level Number, the Player Lives, and the Player
Score.
� The game has several levels, at each new level the num-

ber of blocks is increased to make the game more challenging.
� The game ends when the player either loses all his lives

or completes all the game levels successfully.
� The game milestone events are start of new level and a

lost live.
� The game user interface includes game graphics items

(array of cards, each card has a value to represent one ele-
ment of the array, a ball, and a paddle), game sounds (Hit-
Ball, LostLive, Won, and Lost sounds), and game screens
(Title, Main Menu, Play (Figure 10), Won, and Lost).
� The game play simulates the algorithm steps as follows:

1. The Player hits one block of the array with the ball
using a paddle.

2. If the block is in the middle, the player scores one
point.

(a) If (search number> middle block value), the player
plays on the right section of the array.

(b) If (search number< middle block value), the player
plays on the left section of the array.

(c) If (search number== middle block value), the
level ends.

3. If it is the last level and (Player Lives > zero), the
player wins the game.

4. Else the level number is increased and the player starts
new level.

5. If the block is not in the middle, the player loses one
live.

6. If (Player Lives==0), the player loses the game.

7. Else the player repeats the same level.

6.2 Selection Sort Game Prototype
The Selection Sort algorithm sorts an array of numbers as

follows: it finds the minimum value in the list, swaps it with
the value in the first position, and repeats for remainder of
the list (excluding the swapped elements at the beginning).

6.2.1 Game Design Elements
� The main idea of the game is sorting a group of dominoes

in a fixed time according to the algorithm rules.
� The game starts by displaying one game level that in-

cludes a group of dominoes with their values shown, the
Repeating Limit, the Level Number, the Player Score, and
the Level Time.
� The game has several levels, at each new level the num-

ber of dominoes is increased, and the time is decreased to
make the game more challenging.
� The game ends when either all the game levels are com-

pleted successfully or the Repeating Limit equals zero.

� The game milestone event is the start of new level.
� The game user interface includes graphics items (group

of dominoes, each one has a value), game sounds (TimeEnds,
Won, and Lost sounds), and game screens (Title, Main
Menu, Play, Won, and Lost).
� The game play simulates the algorithm steps as follows:

1. The player chooses the smallest dominoes value and
inserts it in its correct sorting place on the left.

2. If the player inserts the selected domino in incorrect
place, the Player Score is decreased by one.

3. If the Level Time ends without sorting all the domi-
noes, the player loses the level, then:

(a) If (Repeating Limit > zero), the player repeats
the same level and the Repeating Limit is de-
creased by one.

(b) Else the player loses the game.

4. If completes the level in the specified time, the player
goes to the next level and the Player Score and the
Level Number are increased.

5. If completes all levels on time, the player wins the game
and the Player Score is displayed.

6.3 Insertion Sort Game Prototype
The Insertion Sort algorithm sorts an array of numbers as

follows: it removes an element from the input data, inserts
it into the correct position in the already-sorted list, until
no input elements remain, and repeats for remainder of the
list (excluding the elements in already-sorted list).

6.3.1 Game Design Elements
� The main idea of the game is sorting a pile of cards in

a fixed time.
� The game starts by displaying one game level that in-

cludes a pile of unsorted, covered cards, the Player Lives,
the Game Timer, the Repeating Limit, the Level Number,
the Player Score, and the Level Time.
� The game has several levels, at each new level the num-

ber of cards is increased to make the game more challeng-
ing.
� The game ends when either all the game levels are com-

pleted successfully or the Player Lives equals zero.
� The Game milestone events are start of new level and a

lost live.
� The game user interface includes game graphics items

(array of cards, each card has a value), game sounds (LostLive,
Won, and Lost sounds), and game screens (Title, Main Menu,
Play, Won, and Lost).
� The game play simulates the algorithm steps as follows:

1. The player chooses one card at a time to be the key.

2. The player uncovers the chosen card to see its value.

3. The Player must compare the card with all the cards
on the lift to insert it in its sorted place.

4. If inserts the card in incorrect place, the player loses
one point.

5. If the Level Time ends without sorting all the cards,
the player loses the level, then:

(a) If (Player Lives > zero), the player loses one live
and repeats the same level.

(b) Else the player loses the game.

6. If completes the level in the specified time, the player
goes to the next level and the Player Score and the
Level Number are increased.

7. If completes all levels on time, the player wins the game
and the Player Score is displayed.

7. CONCLUSIONS AND FUTURE WORK
(AVuSG) is an algorithm learning and visualization method

that uses serious computer games to visualize algorithms. It
benefits from the players desire to win, love to compete, and
entertaining resulted from playing games to motivate stu-
dents learning algorithms. Moreover, it facilitates the stu-
dents’ assessment using the winning-losing criteria of com-
puter games without the need for external questions. In ad-
dition, the approach integrates learning theories with game
design to introduce three educational models, the instructors
can deploy in their classes to teach students algorithms.

(Serious-AV) system implemented the (AVuSG) frame-
work with a goal to be used by both instructors and stu-
dents. The instructor uses (Serious-AV) designers to de-
sign a text, a flowchart, and a game for the algorithm un-
der study. The students use (Serious-AV) viewers to view
their instructor designs. Depending on the deployed learn-
ing model, students may also create their algorithm text,
flowchart, and game designs. However, game design and
development are not easy tasks, so more attention is given
to the development of the Algorithm Game Designer. It
has several components and editors to automate and sim-
plify the game development. The implementation of most of
these components have been completed except for the Script,
Screens, and Graphics Items editors. The Script editor will
allow designers to design their games using a script language
such as Iron-Python or Lua, where the Screens and Graphics
Items editors will allow for the graphical design of several
game components. Currently, the (SAVGEngine) game en-
gine supports the creation of 2D algorithm games, but it
will be extended to support 3D games. In addition, the al-
gorithm game repository will be updated with more game
components that support the design of different algorithm
games. Serious-AV has one implemented algorithm game,
the Binary Search game, but more games will be added later.

When the proposed system is fully implemented, a user
study for the (AVuSG) approach can be conducted. The
students can be divided into four groups, one of the three
learning models will be applied on each group, and the fourth
group will use the traditional instruction methods.

8. REFERENCES
[1] R. Baecker. Sorting out sorting: A case study of

software visualization for teaching computer science.
In Software Visualization: Programming as a
Multimedia Experience, pages 369–381. The MIT
Press, 1998.

[2] R. Baecker and D. Sherman. Sorting out sorting. 30
minute colour sound film, Dynamic Graphics Project,
University of Toronto, 1981. Excerpted and reprinted
in SIGGRAPH Video Review 7,1983.

[3] M. Bäsken and S. Näher. Geowin - a generic tool for
interactive visualization of geometric algorithms. In
Revised Lectures on Software Visualization,
International Seminar, pages 88–100. Springer-Verlag,
2002.

[4] S. B. Bloom. Taxonomy of educational objectives.
Pearson Education, 1984.

[5] M. H. Brown and R. Sedgewick. A system for
algorithm animation. In SIGGRAPH ’84: Proceedings
of the 11th annual conference on Computer graphics
and interactive techniques, pages 177–186. ACM Press,
1984.

[6] M. D. Byrne, R. Catrambone, and J. T. Stasko. Do
algorithm animations aid learning? Technical Report
GIT-GVU-96-18, 1996.

[7] E. Carson, I. Parberry, and B. Jensen. Algorithm
explorer: visualizing algorithms in a 3d multimedia
environment. In SIGCSE ’07: Proceedings of the 38th
SIGCSE technical symposium on Computer science
education,Covington, pages 155–159. ACM Press,
2007.

[8] K. Crawford. Vygotskian approaches to human
development in the information era. Educational
Studies in Mathematics, 31:43–62, 1996.

[9] P. D. Eades and K. Zhang, editors. Software
Visualization, volume 7. World Scientific, 1996.

[10] R. S. Feldman. Understanding Psychology.
McGraw-Hill, 1996.

[11] G. I. G. Cattaneo and U. Ferraro-Petrillo. Catai:
Concurrent algorithms and data types animation over
the internet. Visual Languages and Computing,
13(4):391–419, August 2002.

[12] R. Gagne, L. Briggsm, and W. Wager. Principles of
Instructional Design. New York: Holt, Rinehart &
Winston, 3rd edition, 1988.

[13] S. Grissom, M. F. McNally, and T. Naps. Algorithm
visualization in cs education: comparing levels of
student engagement. In SoftVis ’03: Proceedings of the
2003 ACM symposium on Software visualization, San
Diego, pages 87–94. ACM Press, 2003.

[14] A. Hejdenberg. The psychology behind games.
Gamasutra– Website, April 26, 2005. Accessed
10/10/2008, http://www.gamasutra.com/features/
20050426/hejdenberg 01.shtml.

[15] W. Huitt and J. Humme. Educational Psychology.
College of Education, 1999.

[16] C. Hundhausen. The ”algorithms studio” project:
using sketch-based visualization technology to
construct and discuss visual representations of
algorithms. In HCC ’02: Proceedings of the IEEE
2002 Symposia on Human Centric Computing
Languages and Environments, Arlington, pages
99–100. IEEE Computer Society, 2002.

[17] C. Hundhausen, S. Douglas, and J. Stasko. A
meta-study of algorithm visualization effectiveness.
Visual Languages and Computing, 13(3):259–290,
2002.

[18] C. D. Hundhausen and J. L. Brown. What you see is
what you code: A radically dynamic algorithm
visualization development model for novice learners.
In VLHCC ’05: Proceedings of the 2005 IEEE
Symposium on Visual Languages and Human-Centric

Computing, pages 163–170. IEEE Computer Society,
2005.

[19] H. Jenkins. The games to teach project. Comparative
Media Studies-MIT –Website, 2001. Accessed
03/10/2008,
http://www.educationarcade.org/gtt/proto.html.

[20] A. Korhonen. Visual Algorithm Simulation. Doctoral
dissertation (tech rep. no. tko-a40/03), Helsinki
University of Technology, 2003.

[21] T. W. Malone. What makes things fun to learn?
heuristics for designing instructional computer games.
In SIGSMALL ’80: Proceedings of the 3rd ACM
SIGSMALL symposium and the first SIGPC
symposium on Small systems, Palo Alto, pages
162–169. ACM Press, 1980.

[22] T. L. Naps. Jhave: Supporting algorithm
visualization. IEEE Computer Graphics and
Applications, 25(5):49–55, 2005.

[23] T. L. Naps, G. Rossling, V. Almstrum, W. Dann,
R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,
M. McNally, S. Rodger, and J. A. Velazquez-Iturbide.
Exploring the role of visualization and engagement in
computer science education. In ITiCSE-WGR ’02:
Working group reports from ITiCSE on Innovation
and technology in computer science education, Aarhus,
pages 131–152. ACM Press, 2002.

[24] M. Packard. A crash course in game design and
production. Lord Generic Productions– Website,
1996-2001. Accessed 10/26/2008.

[25] C. Pelletier. The making of games project. London
Knowledge Lab– Website. Accessed 03/17/2008,
http://www.lkl.ac.uk/research/pelletier.html.

[26] J. M. Randel, B. A. Morris, C. D. Wetzel, and B. V.
Whitehill. The effectiveness of games for educational
purposes: a review of recent research. Simul. Gaming,
23(3):261–276, 1992.

[27] G. Rossling and B. Freisleben. Animal: A system for
supporting multiple roles in algorithm animation.
Visual Languages and Computing, 13(3):341–354,
2002.

[28] G. Rossling and T. L. Naps. A test-bed for pedagogical
requirements in algorithm visualizations. In ITiCSE
’02: Proceedings of the 7th annual conference on
Innovation and technology in computer science
education, Aarhus, pages 96–100. ACM Press, 2002.

[29] C. A. Shaffer, M. Cooper, and S. H. Edwards.
Algorithm visualization: a report on the state of the
field. In SIGCSE ’07: Proceedings of the 38th SIGCSE
technical symposium on Computer science education,
Covington, pages 150–154. ACM Press, 2007.

[30] L. Stern, H. Sondergaard, and L. Naish. A strategy for
managing content complexity in algorithm animation.
In ITiCSE ’99: Proceedings of the 4th annual
SIGCSE/SIGCUE ITiCSE conference on Innovation
and technology in computer science education, Cracow,
pages 127–130. ACM Press, 1999.

[31] M. J. Wolf. The Medium of the Video Game.
University of Texas Press, 1st edition, 2002.

APPENDIX
A. THEORIES AND MODELS

A.1 Learning Theories
Learning theories provide a conceptual framework for in-

terpreting the examples of learning.

A.1.1 Behaviorism
The learner responses to environment stimulation in ways

that increase or decrease the likelihood of the same response
in the future [15].

A.1.2 Cognitivism
Learning is a complex process that utilizes problem-solving,

insightful thinking, and repetition of a stimulus-response
chain [10].

A.1.3 Constructivism
Constructivism states that human beings actively con-

struct knowledge for themselves through active interaction
with the environment and previous experiences. Vygotsky’s
social development theory focuses on the connections be-
tween people and the sociocultural context [8]. Construc-
tivism influences learning in three ways:

• Curriculum: using curricula customized to the students
prior knowledge.

• Instruction: encouraging students to analyze, interpret,
and predict information.

• Assessment: assessment becomes part of the learning
process so that students judging their own progress.

A.2 Models of learning
Models of learning attempt to examine and organize all

the elements that contribute to learning in a systematic way
that can easily be applied to learning situations.

A.2.1 Bloom’s Model
Bloom defined a hierarchy of six objectives for any learn-

ing process: 1) Knowledge: remembering previously learned
material; 2) Comprehension: grasping the meaning of the
material; 3) Application: using learned material in new sit-
uations; 4) Analysis: breaking down material into its com-
ponent; 5) Synthesis: combining parts to form a new whole;
6) Evaluation: judging the value of material [4].

A.2.2 Gagne’s Model
Gagne, Briggs, and Wager have derived nine events of in-

struction that can be applied during a learning process: 1)
gaining attention, 2) activating motivation, 3) stimulating
recall of prerequisite learning, 4) presenting stimulus ma-
terial, 5) providing learning guidance, 6) eliciting the per-
formance, 7) providing feedback, 8) assessing the learner’s
performance, 9) promoting retention and transfer [12].

A.3 Motivation Theory
Motivation theory is concerned with the factors that stim-

ulate or inhibit the desire to engage in a behavior. Malone
and Lepper [21] distinguish between two types of motiva-
tion: Extrinsic that is supported by factors external to the
activity and Intrinsic that arises directly from doing the ac-
tivity. Some of the factors that enhance the motivation of
the learner are individual since they operate even when a
learner is working alone: challenge, curiosity, control, and
fantasy. Other interpersonal factors play a role only when
someone else interacts with the learner: competition, coop-
eration, and recognition [14].

