Chapter 5: Permutation Groups

Dr. Jehan Al-bar

Chapter 5: Permutation Groups

Dr. Jehan Al-bar

December 3, 2010

Chapter 5: Permutation Groups

Dr. Jehan Al-bar

We study Certain groups of functions, known as permutation groups from a set A to itself.

Definition of Permutation on A, Permutation Group of A.

Chapter 5: Permutation Groups

Dr. Jehan Al-bar

Definition

A permutation of a set A is a function from A to A that is both one-one and onto. A permutation group of a set A is a set of permutations of A that forms a group under function composition.

Definition of Permutation on A, Permutation Group of A.

Chapter 5: Permutation Groups

Dr. Jehan Al-bar

In this chapter we consider the set A to be finite, and we set $A=\{1,2,3, \ldots, n\}$ for positive integer n.

Examples

Chapter 5:
Permutation
Groups
Dr. Jehan
Al-bar

1 A permutation α on the set $\{1,2,3,4\}$ is defined to be $\alpha(1)=2, \alpha(2)=3, \alpha(3)=1, \alpha(4)=4$. We write α in array form

$$
\alpha=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right]
$$

2 A permutation β on the set $\{1,2,3,4,5,6\}$ is defined to be $\beta(1)=5, \beta(2)=3, \beta(3)=1, \beta(4)=6, \beta(5)=2$, $\beta(6)=4$, and we write

$$
\beta=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 3 & 1 & 6 & 2 & 4
\end{array}\right]
$$

Composition of Permutations

Chapter 5:
Permutation
Groups
Dr. Jehan
Al-bar

We express the composition of permutations in array notation, and we carry it out from right to left going from top to bottom, then again from top to bottom, as we see in the next example.

Composition of Permutations

Chapter 5: Permutation Groups

Dr. Jehan Al-bar

Example

$$
\text { Let } \begin{gathered}
\sigma=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 3 & 5 & 1
\end{array}\right] \text { and } \gamma=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 1 & 2 & 3
\end{array}\right] \text { Then } \\
\gamma \sigma=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 3 & 5 & 1
\end{array}\right]
\end{gathered}
$$

On the right array we have 2 under 1 , and on the left array we have 4 under 2 , so in the composition we must have 4 under 1 , and so on. in function composition language we write $(\gamma \sigma)(1)=\gamma(\sigma(1))=\gamma(2)=4$, hence $\gamma \sigma$ sends 1 to 4 .
Following in this manner we have
$\gamma \sigma=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 1 & 3 & 5\end{array}\right]$

Symmetric Group S_{n}

Chapter 5:
Permutation
Groups
Dr. Jehan
Al-bar

Let $A=\{1,2,3, \ldots, n\}$. Then the set of all permutations of A under the function composition is called the symmetric group of degree n and is denoted by S_{n}. Elements of S_{n} are on the form

$$
\alpha=\left[\begin{array}{cccc}
1 & 2 & \ldots & n \\
\alpha(1) & \alpha(2) & \ldots & \alpha(n)
\end{array}\right]
$$

The order of $S_{n}=n!$

Symmetric Group S_{3}

Chapter 5:
Permutation
Groups
Dr. Jehan Al-bar

Example

Let S_{3} denote the set of all one-one and onto functions from $\{1,2,3\}$ to itself. Then S_{3} under function composition, is a group with 6 elements. They are
$\varepsilon=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right], \alpha=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right], \alpha^{2}=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right]$,
$\beta=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right], \alpha \beta=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right], \alpha^{2} \beta=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right]$.
We note that $\beta \alpha \neq \alpha \beta$, so S_{3} is non-Abelian group.

Cycle Notation

Chapter 5:
Permutation Groups

Dr. Jehan
Al-bar

The cycle notation is another way to specify permutations. Some important properties of the permutation can easily be determined when cycle notation is used. Let

$$
\alpha=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 4 & 6 & 5 & 3
\end{array}\right]
$$

In cycle notation $\alpha=(12)(346)(5)$, and for

$$
\beta=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 3 & 1 & 6 & 2 & 4
\end{array}\right]
$$

we have $\beta=(1523)(46)$ or $\beta=(46)(3152)$.
An expression of the form $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is called a cycle of length m or an m-cycle.

Multiplication of Cycles

Chapter 5:
Permutation
Groups
Dr. Jehan
Al-bar

We think of a cycle as a permutation that fixes any symbol not appearing in the cycle. For example, the cycle (46) represents the permutation $\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 5 & 4\end{array}\right]$.
Bearing this in mind, when multiplying cycles we think of them as permutations given in array form. For example, in S_{8}, let $\alpha=(13)(27)(456)(8)$ and $\beta=(1237)(648)(5)$, then $\alpha \beta=(13)(27)(456)(8)(1237)(648)(5)$

A disjoint Cycle Form

Chapter 5:
Permutation
Groups
Dr. Jehan
Al-bar

In this form the various cycles have no number in common. Because function composition is done from right to left, and each cycle that does not contain a symbol fixes that symbol, we see that (5) fixes 1 , (648) fixes 1 , (1237) sends 1 to 2 , (8) fixes 2 , (456) fixes 2, (27) sends 2 to 7 , and (13) fixes 7 . So the net effect of $\alpha \beta$ is to send 1 to 7 . So $\alpha \beta=(17 \ldots$.$) .$ Repeating the process starting with 7 , we have $7 \rightarrow 7 \rightarrow 7 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 3$, so that $\alpha \beta=(173 \ldots)$. Ultimately, we have $\alpha \beta=(1732)(48)(56)$. The important thing when multiplying cycles is to keep moving from one cycle to the next from right to left.

A Cycle Notation, Disjoint cycle form

Example
Let $\alpha=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4\end{array}\right]$ and $\beta=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3\end{array}\right]$
In cycle notation $\alpha=(12)(3)(45)$ and $\beta=(153)(24)$, and $\alpha \beta=(12)(3)(45)(153)(24)$. In disjoint cycle form, $\alpha \beta=(14)(253)$. To convert $\alpha \beta$ back to array form, we observe that (14) means 1 goes to 4 and 4 goes to 1 , (253) means $2 \rightarrow 5 \rightarrow 3 \rightarrow 2$.

It is preferred not to write the cycle with one entry. The missing element is mapped to itself. For instance, the previous α cab be written as $\alpha=(12)(45)$

The Identity Permutation in Cycle Form

Chapter 5:
Permutation
Groups
Dr. Jehan
Al-bar

The identity permutation consists only of cycles with one entry, so we write just one cycle. For example,

$$
\varepsilon=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{array}\right]
$$

can be written as $\varepsilon=(5)$ or $\varepsilon=(3)$.
Remember that missing elements are mapped to themselves.

