Department of Mathematics

First Semester 2009-10
First Semester 1430-31

Textbook: Thomas' Calculus, Eleventh Edition (2008), Authors: Weir, Hass and Giordano

		Lectures				
Chapter Title	Section Title	Subtitle	Examples	Exercises	HW	HW on line: Due date (end of)
Chapter 10 Conic Sections and Polar Coordinates	10.1 Conic Sections and Quadratic equations	Parabolas, Ellipses, Hyperbolas, Shifting conic sections (Page 694), Inequalities (Page 695)	1,2, 3, 4, 5	$\begin{gathered} 40,42,44 \\ 58,70 \end{gathered}$	$\begin{aligned} & 1,3,9,11,13,15, \\ & 17,19,25,31,33, \\ & 35,37,39,41,43, \\ & 57,59,71 \end{aligned}$	$\begin{gathered} 45,49,51, \\ 53,59,63 \\ 3^{\text {rd }} \text { Week } \\ \hline \end{gathered}$
	10.2 Classifying Conic Sections by Eccentricity	Eccentricity of Ellipse, Hyperbola, Parabola	2, 3, 4	$\begin{aligned} & 2,10,12, \\ & 14,27,37 \end{aligned}$	$\begin{aligned} & 1,3,7,, 9,11,15, \\ & 31,33 \end{aligned}$	$19,25,35,39$ $3^{\text {rd }}$ Week
	10.3 Quadratic Equations and Rotations	Equations (1), (4), (5), (6), (7), The Discriminant Test	1, 2, 3		1, 3, 5, 7, 15, 19	$\begin{array}{ll} \hline 23,25 \\ 3^{\text {rd }} \text { Week } \end{array}$
	10.4 Conics and Parametric Equations; The Cycloid	Parabolas and Hyperbolas, Cycloids	1, 2, 3		3, 5, 7	$\begin{aligned} & 9,11 \\ & 4^{\text {th }} \text { Week } \end{aligned}$
	10.5 Polar Coordinates	Definition of Polar coordinates, Polar Equations and Graphs, Relating polar and Cartesian Coordinates	$\begin{gathered} 1,2,3,4 \\ 5,6 \end{gathered}$		$\begin{aligned} & 3,6 \text { (a-d, f), } 7,9, \\ & 11,21,23,27,31, \\ & 35,51 \end{aligned}$	$\begin{gathered} \text { 41, 43, 53, } \\ 55,59 \\ 4^{\text {th }} \text { Week } \\ \text { week } \end{gathered}$
	10.6 Graphing in Polar coordinates	Symmetry Tests for Polar Graphs, Slope	1, 2, 4, 5	18	$1,3,5,7,17,19,29$	$\begin{array}{r} \text { 31, 33, } 37 \\ \mathbf{4}^{\text {th }} \text { Week } \end{array}$
	10.7 Areas and Lengths in Polar coordinates	Area in the plane, Length of a polar Curve, Area of a Surface of Revolution	1,2, 3, 4, 5		3, 9, 13, 19	$\begin{aligned} & 21,23,29 \\ & 5^{\text {th }} \text { Week } \\ & \hline \end{aligned}$

	10.8 Conic Sections in polar Coordinates	Lines, Circles, Polar Equations for Lines and Circles, Polar Equation for a Conic with Eccentricity	$\begin{aligned} & 1,2,3,4, \\ & 5 \end{aligned}$		$\begin{aligned} & 5,9,11,17,21,31, \\ & 33,35 \end{aligned}$	$\begin{aligned} & \hline 27,29,37, \\ & 39,41,43 \\ & 5^{\text {th }} \text { Week } \\ & \hline \end{aligned}$
Chapter 12 Vectors and the Geometry of Space	12.1 Three-Dimensional Coordinate Systems	Distance and Spheres in Space	$\frac{1,2,3,4,}{5}$	$\begin{aligned} & 11,25,27, \\ & 53,54,56 \end{aligned}$	$\begin{aligned} & 1,3,5,7,9,13,15, \\ & 17,19,21,29,33, \\ & 35,39,41,45,51 \end{aligned}$	$\begin{gathered} 31,43,49,55 \\ 5^{\text {th }} \text { Week } \end{gathered}$
	$\begin{gathered} \hline \mathbf{1 2 . 2} \\ \text { Vectors } \end{gathered}$	Component Form, Vector Algebra Operations, Unit Vectors, Midpoint of a Line Segment	$\begin{aligned} & 1,3,5,6, \\ & 7,8 \end{aligned}$	14, 39	$\begin{aligned} & 5,7,9,13,17,21, \\ & 25,31,33,37 \end{aligned}$	$\begin{gathered} 15,27,39,41 \\ 6^{\text {th }} \text { Week } \end{gathered}$
	12.3 The Dot Product	Angle Between Vectors, Perpendicular (Orthogonal) Vectors, Dot Product Properties and Vector projections, writing Vectors as a Sum of Orthogonal Vectors, Direction Angles and Direction Cosines (Q 15)	$\begin{aligned} & 1,2,3,4, \\ & 5,6 \end{aligned}$	$\begin{gathered} 29,33,34 \\ 35,47 \end{gathered}$	1, 3, 7, 11,	$\begin{aligned} & 37,49,51 \\ & \mathbf{6}^{\text {th }} \text { Week } \end{aligned}$
	12.4 The Cross Product	The Cross Product of Two Vectors in Space, Triple Scalar or Box Product	$\begin{aligned} & 1,2,3,4, \\ & 6 \end{aligned}$	$\begin{gathered} 11,24,33, \\ 34 \end{gathered}$	$\begin{aligned} & 1,3,7,9,13,15, \\ & 17,19,21,23,27, \\ & 31,35,37 \end{aligned}$	$\begin{gathered} 29,39,41,43 \\ 6^{\text {th }} \text { Week } \\ \hline \end{gathered}$
	12.5 Lines and Planes in Space	Line and Line Segments in Space, The Distance from a Point to a Line in Space, An Equation for a Plane in Space, The Distance from a Point to a Plane, Angle Between Planes	$\begin{aligned} & 1,2,3,5 \\ & 6,7,8,9 \\ & 10,11,12 \end{aligned}$	$\begin{gathered} 28,46,62, \\ 71 \end{gathered}$	$\begin{aligned} & 1,3,5,7,9,15,17, \\ & 21,23,25,27,29, \\ & 31,35,41,45,47, \\ & 53,61 \end{aligned}$	$\begin{gathered} 55,59,65,67 \\ 7^{\text {th }} \text { Week } \end{gathered}$
	12.6 Cylinders and Quadric Surfaces	Cylinders, Quadric Surfaces	$\begin{aligned} & 1,2,3,4, \\ & 5,6,7 \end{aligned}$	65, 68	$\begin{aligned} & 3,7,15,17,21,27, \\ & 29,31,33,35,37 \end{aligned}$	$\begin{aligned} & 41,59,69 \\ & 7^{\text {th }} \text { Week } \end{aligned}$
Chapter 13	13.1 Vector Functions	Limit and Continuity, Derivatives and Motion, Differentiation Rules, Vector Functions of Constant Length, Integrals of Vector Functions, Formulas 7-8 (Q46)	$\begin{aligned} & 1,2,3,4, \\ & 5,6,7 \end{aligned}$	$\begin{gathered} 6,9,20 \\ 28,34 \end{gathered}$	$\begin{aligned} & 1,3,5,11,13,15, \\ & 19,21,27,31,33 \end{aligned}$	$\begin{gathered} 25,29,35,47 \\ 7^{\text {th }} \text { Week } \end{gathered}$
Vector- Valued Functions and Motion in Space	13.2 Modeling Projectile Motion	The vector and Parametric Equations for Ideal Projection Motion; Height, Flight Time, and Range; Firing from $\left(x_{0}, y_{0}\right)$	1	2	1	3 $8^{\text {th }}$ Week
	13.3 Arc Length and the Unit Tangent Vector T	Arc Length as a Space Curve, Speed on a Smooth Curve, Unit Tangent Vector T	1,2,3, 4	10	1, 3, 5, 9	$\begin{gathered} 7,13,15 \\ 8^{\text {th }} \text { Week } \end{gathered}$

	13.4 Curvature and the Unit Normal Vector \mathbf{N}	Curvature of a Plane Curve, Circle of Curvature for Plane Curves, Curvature and Normal Vectors for Space Curves	$\begin{aligned} & 1,2,3,4, \\ & 5,6 \end{aligned}$		1, 3, 9, 13	$\begin{aligned} & 5(\mathrm{a}, \mathrm{~b}), 11 \\ & 8^{\text {th }} \text { Week } \\ & \hline \end{aligned}$
	13.5 Torsion and the Unit Binormal Vector B	Torsion, Tangential and Normal Components of Acceleration, Formulas 4, 5 and 6	1,2		1, 5, 9, 11	$7,13$ $9^{\text {th }}$ Week
	13.6 Planetary Motion and Satellites	Motion in Plane and Cylindrical Coordinates, Planets Move in Planes, Kepler's First, second, and Third Laws (Statements only)				
Chapter 14 Partial Derivatives	14.1 Functions of Several Variables	Functions of Two Variables; Graphs, Level Curves, and Contours of Functions of Two Variables; Functions of Three Variables	$\begin{aligned} & 1,2,3,4, \\ & 5 \end{aligned}$	8, 10, 30	$\begin{aligned} & 1,3,5,7,9,19,23, \\ & 33,41 \end{aligned}$	$\begin{array}{r} 11,31,39 \\ \mathbf{9}^{\text {th }} \text { Week } \end{array}$
	14.2 Limits and Continuity in Higher Dimensions	Limits, Theorem 1, Continuity, Functions of More Than Two Variables	$\begin{aligned} & 1,2,3,4, \\ & 5 \end{aligned}$	$\begin{gathered} 20,30,42, \\ 56,61 \end{gathered}$	$\begin{aligned} & 1,7,13,15,21,27, \\ & 31,37,39,41,51 \end{aligned}$	$17,53,59$ $9^{\text {th }}$ Week
	14.3 Partial Derivatives	Partial Derivatives of a Function of Two Variables, Calculations, Functions of More Than Two Variables, Partial Derivatives and Continuity, Second-Order Partial Derivatives, The Mixed Derivative Theorem, Differentiability, Corollary of Theorem 3, Theorem 4	$\begin{aligned} & 1,2,3,4, \\ & 5,6,8,9, \\ & 10 \end{aligned}$	58, 68, 70	$\begin{aligned} & 3,7,9,11,19,21, \\ & 25,31,43,53,57, \\ & 63,65,69,71,73 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 37,39,49, \\ 54,67,75 \end{array} \\ & 10^{\text {th }} \text { Week } \end{aligned}$
	14.4 The Chain Rule	Functions of Two Variables, Theorem 5, Functions of Three Variables, Theorem 6, Functions Defined on Surfaces, Theorem 7, Implicit Differentiation Revisited: Theorem 8, Functions of Many Variables, Three-Variable Implicit Differentiation (Page 1004)	$\begin{aligned} & 1,2,3,4, \\ & 5 \end{aligned}$	$\begin{gathered} 30,34,42, \\ 49 \end{gathered}$	$\begin{aligned} & 3,5,7,11,13,15, \\ & 17,23,25,29,33, \\ & 35,41,43 \end{aligned}$	$\begin{aligned} & 9,21,27,31 \\ & 10^{\text {th }} \text { Week } \end{aligned}$
	14.5 Directional Derivatives and Gradient Vectors	Definition 1, Interpretation of the Directional Derivatives, Calculation and Gradients, Theorem 9, Properties of the Directional Derivative, Gradients and Tangents to Level Curves, Algebra Rules for Gradients, Functions of Three Variables	$\begin{aligned} & 1,2,3,4, \\ & 5,6 \end{aligned}$	27, 29	$\begin{aligned} & 1,3,5,11,13,17, \\ & 19,23,28 \end{aligned}$	$\begin{gathered} 15,21,25 \\ 11^{\text {th }} \text { Week } \end{gathered}$
	14.6 Tangent Planes and Differentials	Tangent Planes and Normal Lines, Equations (2, 3, 4), Estimating Change in a Specified Direction, How to Linearize a Function of Two Variables (Equation 5), Differentials, Functions of More Than Two Variables	$\begin{aligned} & 1,2,3,4, \\ & 5,7,10 \end{aligned}$		$\begin{aligned} & 1,3,5,9,15,17, \\ & 19,25,27,37,39, \\ & 47 \end{aligned}$	$\begin{gathered} 8,11,29,49, \\ 63 \\ 11^{\text {th }} \text { Week } \end{gathered}$

	14.7 Extreme Values and Saddle Points	Derivative Tests for local Extreme Values, Theorem 10, Theorem 11, Absolute Maxima and Minima on Closed bounded regions	$\begin{aligned} & 1,2,3,4, \\ & 5 \end{aligned}$	26, 29	$\begin{aligned} & 1,3,7,9,17,19, \\ & 25,29,31,43 \end{aligned}$	$\begin{gathered} 27,33 \\ \text { 12 }^{\text {th }} \text { Week } \\ \hline \end{gathered}$
	14.8 Lagrange Multipliers	Constrained Maxima and Minima, The method of Lagrange Multipliers (Equations (1))	1, 3, 4	18	$1,3,5,13,19$	$7,21$ $12^{\text {th }}$ Week
	14.9 Partial Derivatives with Constrained Variables	How to find $\partial w / \partial x$ When the Variables in $w=f(x, y, z)$ Are Constrained by Another Equation, Notation	1, 2, 3	5,10	7	$\begin{gathered} 1 \\ \mathbf{1 3}^{\text {th }} \text { Week } \end{gathered}$
	14.10 Taylor's Formula for Two Variables	Taylor's Formulas (7) and (8)	1	2	1, 3	9 $13^{\text {th }}$ Week

Note:

1. All examples and exercises in the lectures part must be solved by the instructor.
2. Every Exam will contain at least $\mathbf{2 5 \%}$ multiple choice (MC) questions.
3. Homework should be submitted online on or before the due date

Marks distribution

1. First Exam (75 Min; 25 Marks); Second Exam (75 Min; 25 Marks); Final Exam (120 Min; 40 Marks)
2. Homework (10 Marks)
