
)م2004 أبريل / هـ1425 صفر (المدينة المنورةبدالعزيز ، ، جامعة الملك ع) المعلوماتية في خدمة ضيوف الرحمن(المؤتمر الوطني السابع عشر للحاسب الآلي

 547

An Agent Based Algorithm
for Document Analysis (ABADA)

K. Jambi, M. Saleh, H. Barhamtooshi, F. Essa and A. Ezz
Computer Science Department

King Abdul Aziz University
Jeddah, Saudi Arabia

ABSTRACT The aim of document layout analysis is to extract the geometric
structure for the document image. The introduced system is deigned to work with a
variety of documents, without prior knowledge about the nature of the document.
This algorithm mainly depends on dividing the document into strips or runs, these
runs ease the document handling and enable the ability of handling a part of the
document and then handling the other part. This is too important when handling
memory, and when downloading documents from networks. It can be calssified as a
hybrid tecnique of top-down, and bottom-up, to overcome the disadvantages in each
staregy. Agent tecnology is used to ease the operation of the system through the
network. Expermental results reveal the proposed approach is effective.

1. Introduction

Documents can be viewed as paper-based documents, or digitized documents. Paper-
based documents are processed for information extraction by human which make these
documents a labor force consuming. Moreover, These documents need much space for
storing. On the other hand, digitized documents can be viewed as electronic images which are
machine searchable. This ability makes electronic documents preferable for its fast search
capabilities as well as less storage media.

Layout analysis is the extraction of geometric structure from the document image [1].
The given document image is generally in binary format. It is segmented into several objects
due to location, contents, homogenity, and other attributes. Document layout analysis plays an
important role in automated documet processing environment as it classifies different parts of
the document before deciding which later subsystems to use[2]. Structural layout analysis can
be achieved using top-down or bottom-up techniques [3].

In this work, a document image processing system is developed. This system is based
on an agent technology. The document image analysis system is used to analyze and classify
the document contents in details with a high accuracy. Agents are used to go through
networks in parrallel to reduce the time and to collaborate the documents to get specific
predefined documents. This paper deals with two different concepts. The first concept covers
the intelligent agent technology, and the second one deals with the process of document
analysis. In the following two sections, we will discuss these two concepts.

1.1 Document Analysis

The concept of Document Image Processing is used for performing analysis and
understanding several types of documents. A document is a set of related pages to express a
subject. A page is a set of objects (range from text, graphics, or images) that take part in
describing the mentioned subject. The page is segmented into equi height parts called runs.

 548

An object is a set of finite blocks that have the same characteristics, and it can take any shape,
and it can contain other objects, differ in characteristics and hence in type. A block is a set of
some related neighbored pixels and it is the smallest unit to express the object, and the block
is the part represents the object in a single run. The white color is the default background
color for any determined color. The black color is the default foreground color for any color
except white [1,2]. There are many methods of document layout analysis. Most of these
methods must be skew free, and/or a priori (perquisite) layout models are required [4-6].

1.2 The Concept of the Agent
 An agent is an encapsulted computer system situated in some environment and
capable of a flexiable, autonomous action in their environment in order to meet its design
objectives [7]. Agents are designed to fulfill some specific roles, and to achieve some
particular objectives. Agents receive inputs related to the states of their environment through
sensors and they act on the environment through effectors. They have control over their
internal state and over their own behavior. Also they are capables of exhibiting flexible
problem-solving behavior in pursuit of their design objectives. These means that the agent are
autonomous [8].

2. The Research Objective
This paper introduces an algorithm for a document layout analysis based on agent

technology. The basic idea for document anlaysis is introduced in [9], This algorithm mainly
depends on dividing the document into strips or runs, these runs ease the document handling
and enable the ability of handling a part of the document and then handling the other part.
This is too important when handling memory, and when downloading documents from
networks. These runs are divided into blocks by verifying the horizontal and vertical
thresholds. These blocks are merged or split to constitute the document objects.

The agent used in this paper is Mobil Agent. Mobile Agents are computational
software processes capable of roaming wide area networks (WANs) such as the WWW,
interacting with foreign hosts, gathering information on behalf of its owner and coming back
home having performed the duties set by its user [8,10]. A Mobile Agent is specialized in that
in addition to being an independent program executing on behalf of a network user, it can
travel to multiple locations in the network. As it travels, it performs work on behalf of the
user, such as collecting information or delivering requests [7,8,10].

3. The Document Analysis System (DAS)
The DAS deals with documents that are skew independent. Also, wth DAS there is no

priori knowledge about documents under consideration. The DAS mainly depends on dividing
the document into strips or runs, these runs enable to handle the document easily and also
give the system the ability of handling modules of the document separately. This feature is
very important for avoiding size limitation of the memory as well as memory management
with resepect to downloading huge documents from networks. These runs are divided into
blocks by verifying some horizontal and vertical thresholds. These blocks are then merged or
splited to constitute the document objects. Also, the DAS uses foreground for crossing count
as an indicator for object's homogeneity measurement, classification and identification [9].
The different steps for DAS are disscussed in the following sub sections

3.1 Document Preparation and Run Determination

This is the preparing step. It includes: image capture if not; image binarization while
loading, noise reduction, and runs determination. Optical scanning usually capture the
document image data at a resolution of 300 dpi, but the used algorithm needs only 50 to 75

 549

dpi reducing the processing time to 1/36 to 1/16 of the processing time for the high resolution
document. So, in loading the document it is read at its high resolution but processed at the low
resolution.

The extraction of binary character/graphics images from gray scale document images
with background pictures, highlight, shadows, smeared is a critical image processing
operation [11]. We handle the problem with simple issue in Java language. Gray scale and
colored images can be treated by tuning the threshold value between the foreground and the
background by the user.

Noise is the result of unclear document, imperfect reproduction, or digitization. Such
noise does not disturb human readers but complicates automated analysis [12].
Krishnamoorthy et al, [12] suggested making the grammars sufficiently robust to ignore such
noise. Or removing all specks smaller than a given size in a preliminary pass using connected
components algorithm. But handling noise in our algorithm is done automatically by loading
the image at lower resolution.

To split the document into a number of runs (strips), the following criteria is used:
Rn = Dh / Rh

Where; Rn represents the number of runs, Dh is the document height, and Rh is the run
height. Now, the processed document is splitted into runs and it is ready for manipulation to
get blocks in each run.

3.2 Blocks Determination

In this step, a single run is divided into unrelated blocks. If a run contains more than
one block, this indicates that these blocks belong to different objects. If more than one block
is contained in one object, and they belong to one run, this means that they aren’t related in
that run and at least the horizontal background gap should be used to separate them. Figure (1)
shows some runs , with different blocks

 Rh Run Sample

 Rw = Dw

 Full Run Block

 Free Run

 Normal Run

 Normal Run

Fig. (1): Block Determination Based on Horizontal Threshold Ht

After determining the block coordinates (x1,y1) , (x2,y2). It is required to classify the

block as a text or a halftone block. In fact, homogeneity factor for the blockn is Hn is
measured by:

 550

Where; Fn is the number of foreground pixels in the blockn.,Ccn is the number of variations
(transitions) from foreground to background.
The number of foreground pixels Fn is determined by:

Where:

),(jip is the foreground pixel in the domain of tested block.
 y1 is the starting vertical coordinate of the blockn
 y2 is the ending vertical coordinate of the blockn
 x1 is the starting horizontal coordinate of the blockn
 x2 is the ending horizontal coordinate of the blockn

Crossing count is the number of times the pixel value is turned from background to

foreground background along the whole block. Consequently, the crossing count can be
measured horizontally according to the following formula:

Where),(jip is a background pixel, and),1(jip + is a foreground pixel.

3-3 Block Classification
Text/nontext objects(blocks) tend to group (cluster) in space with respect to some

features, a threshold or a discrimination function is selected for separation. Wong, el. [13]
used a two dimensional plane consisting of mean value of the block height verses run length
of the block mean black pixel to classify document blocks into text, non-text, horizontal lines,
and vertical lines. Fisher el. [14] used a rule based classification technique where some
features such as height, aspect ratio, density, perimeter, and perimeter/width ratio. Wang, and
Srihari, used a method to create the black-white pair run-length matrix and black-white-black
combination run-length matrix to derive three features: short run, emphasis, long run,
emphasis, and extra long run, emphasis for clustering [14].

The object in any orientation has nearly the same number of foreground pixels, all the
objects we are working with may or may not be regular or skewed. So, we must check a right
method for detecting the features of the line. A good feature for object classification is the
foreground/crossing count ratio [9,15].

For example, Figure (2) shows a text object in normal and skewed form, and on the
right is the characteristics of each block. These results indicate that the foreground to crossing
count ratio is nearly constant for the same object horizontally aligned or skewed.

The classification is done according to the following rules:

• If the block F/Cc < 10 and Background > 0
Then the block is text.

• If the block F/Cc < 10 and Background < 0
Then the block is a horizontal line.

• If the block F/Cc > 10 and Background < 0
Then the block is classified as half-tone until merging step.

∑

=

∑

=

=
2

1

2

1
),(

y

yj

x

xi
jipF n

∑∑
= =

+=

2

1

2

1
),1(),(

y

yj

x

xi
n jipjipCc

n

n
n

Cc
FH =

 551

• If the block to be merged with a half-tone block
it will be half-tone

• Else it will be a vertical or sloped line.
• Else If the block F/Cc > 10

Then the block is classified as half-tone

Fig. (2): Three alignments of the same object (Text Object)

3.4 Blocks Concatenation
 After the run ends, and before going to the next run, linking process is done between the
current run blocks and the previous run to constitute a single type objects. The linking process
is done according to the following sub algorithm:
Sub-Algorithm: Check Object()
 { At start let the starting vertical coordinate of the tested block by y1,

and the ending coordinate by y2.
The upper block is i, and the lower is j.
If (y1[j] - y2[i] < Vt)
Then the blocks i and j may be merged go to Final step.
If (y1[j] - y2[i] >= Vt)
Then the two blocks belong to different objects, and this needs the next step.
If one of the two blocks has Block Object Bo = -1
Then index the block with Oi and Increment Oi
If both of the two blocks has Block Object Bo = -1
Then index the first block with Oi and Increment Oi
And index the second block with Oi and Increment Oi
If the two blocks are inhomogeneous, index them with two different index
as the previous step.
Finally, the two blocks i,j are merged
If

xi1 <= xj1 <= xi2 OR
xi1 <= xj2 <= xi2 OR

 552

xj1 <= xi1 <= xj2 OR
xj1 <= xi1 <= xj2

}

3.5 Document Representation
 After getting the document objects, and identifying them, the final stage is to represent
the analyzed document in a simple form suitable for other modules of document image
processing. This is done by producing a file or an array that hold the analyzed blocks data
such that in Table (1).

Table (1) : Representation of Analyzed Document

Block Features Block Dimensions Block
index

Object
index

Block
type Black White Cross

Count
x1 x2 y1 y2

0 1 Text 1731 1578 598 61 207 13 72
1 1 Text 2582 3697 1170 49 199 73 145
2 2 Image 6223 1263 395 29 188 146 218
3 2 Image 8288 -32 165 16 145 219 291
4 2 Image 4252 29 100 9 132 292 339

4. System Implementation

 In this work, we use an agent framework called Concordia [10]. Concordia is a software
framework for developing, running and administrating mobile agents. Concordia mobile
agents are Java programs which travel in the network to perform their function. According to
figure (3), there are three types of agents used in the system: user agent, boss agent, and the
agent server.
 The User Agent (the requestor) for the operation. Its job is to determine exactly what users
are looking for, what they want, if they have any preferences with regard to the information
needed.

Fig. (3): Mobile Agent for Document Analysis

User
BOSS

AGENT

Collaboration

Agent Server

Query gent

Remote
Site #1

Agent Server

Query gent

Remote
Site #2

Agent Server

Query gent

Remote
Site # n

 553

 The Boss Agent: plays a role of intermediate agents. The job of the boss agent is to
receive the user request of infornation and determine the specified classification of this
information. Also, to seacrh the documents database to find the related document(s) and its
location(s) according to the specified classification. Finally, to receive the results of the
doucments agents and save the classified data in the documents database. The classification
of the document data are used to get an accurate document(s) according to user seraching
requirements. And to send the required results to the calling (user) agent.
The scenario of document analysis can be summarized in the following steps:

1- Reading the document image
2- Running the Run Block Algorithm
3- Saving the results in a vector or in a Database
4- Reporting the results by reading the vector or the database

4.1 The DocAnalysis Agent implementation
The DocAnalysis class is the main class of the system. It is implemented as Concordia
Agent and includes the following methods:
• getPixels() to Reading the document image into an array of pixels
• process_horizontally() to process each run (strip)
• process_blocks() to put block information
• block_classify() to classify the block

its Results, a vector to hold the results

// the main class for document analysis
public class DocAnalysis extends Agent
{

// the vector to hold the results
 Vector itsResults;
 public DocAnalysis ()
 {
 itsResults = new Vector();
 }

//the method to print the results
 public void reportResults()
 {
 Enumeration enum = itsResults.elements();
 while (enum.hasMoreElements())
 {

 QueryResult result = (QueryResult)enum.nextElement();
 // printing the results or saving it to file

 }
 }

public void run_block_algorithm()
{
 GetPixels();
 for (int j=0;j< regular_height ;j+=run_height)
 {
 process_horizontally();
 process_blocks();
 block_classify();
 }

 }
public void GetPixels()

 { //Implementation code }
public void process_horizontally()

 { //Implementation code }
public void process_blocks ()

 { //Implementation code }
public void block_classify ()

 { //Implementation code }
}

 554

4.2 The QureyResult class
The DocAnalysis class contains the document analysis data that are gathered by the

agents. The agent firstly travels to the desired location, opens the document, analyzes it, and
finally puts the analysis data in this class. This data can be used by other methods in other
locations. The QueryResult class is implemented as serial object.

4.3 The Agent Launching
 The bootstrap command is used to launch Agents [10]. Launching an Agent refers to the
process of constructing an Agent, setting up its travel Itinerary and beginning its travels
through the network. Before calling a launcher, we build an Itinerary for the Agent and
populate the Itinerary with Destinations using the following method:

itinerary.addDestination(new Destination("server", "method to call "));

1- At start the Boss Agent (main machine) needs to run the DocAnalysis on the
remote site#1

2- The agent travels to machine called "Site#1" and apply "
run_block_algorithm()",

3- Then the agent returns to Boss Agent and apply "ReportResults " method , to
display the image document analysis results.

The code of this launch is shown in the following lines.

5. Typical Example
Figure (4) shows a document images to be analyzed. It contains a mix of text, and

graphical figure. As a good feature to distinguish between graphics, half-tones, and text is the
foreground to crossing count ratio which is lower for text, and higher for half-tone figures.

The layout analysis starts by segmenting the document into a number of runs. Then
these runs are further divided into unrelated runs. Figure (5) displays the result of portioning
the document into runs (horizontal lines), and hence dividing these runs into unrelated blocks
(these blocks are displayed with the vertical lines intersected with runs lines). The next step is
to classify these blocks according to their characteristics, and finally merging these blocks
into unary type objects as shown in Figure (6).

public class TestLaunch {
 public static void main(String args[]) {
 DocAnalysis agent = new DocAnalysis ();
 Itinerary itinerary = new Itinerary();
 itinerary.addDestination(new Destination("Site#1,” run_block_algorithm”);
itinerary.addDestination(new Destination("boss", "reportResults"));
 String code = "file:C:\MyAgent";
 String relatedClasses[] = {"QueryResult"};
 BootStrap.launchAgent(agent, itinerary, code, relatedClasses);
 }
}

class QueryResult
{// to store the block information as in table (1) }

 555

Fig. (4): Sample Document with different objects orientation

Fig. (5) : The Document After Portioning into Runs and Blocks

 556

Legends:
Rh:= Run hight Vt :=Vertical threshold Ht:= horizontal threshold

Fig. (6): Object Construction

6. Conclusion
This paper represented an important step toward office automation. In this work we

build mobile agent for document analysis Due to the nature of the mobile agent technonlogy,
the system can go to a differnet machine and handles different documen images in the same
time. In this work we build a single mobile agent. In the future work we will extend this
single mobile agent to multi agents system. The multi agents system can improve the roles of
the document analysis. The agents can be coordinated and collorbrated to obtain a good
results from different documents in different machine at the same time.

Acknwledgement:
 The research team is thankful for the grant no. At-21-96 from King Abdulaziz City for
science and Technology.

References
 [1] Tang, Y. Y., Lee, S., and Suen, C. Y., “Automatic Document processing A Survey”, Pattern

Recognition, Vol. 29 No. 12 pp. 1931-1952, 1996.
[2] Liu, F., Luo, Y., Yoshikawa, M., and Hu, D., “A New Component based Algorithm for Newspaper

Layout Analysis”, Proc. 6th IEEE ICDAR, 2001.
[3] O’Gorman L., and Kasturi R. (eds.), Document Image Analysis, IEEE Computer Society Press, New

York, 1995
[4] Gross, A., and Latecki, L., “Digital Geometric Methods in Document Image Analysis”, Pattern

Recognition, Vol. 32 No. 3 pp. 407-424, 1999.

 557

[5] Nagy, G., “Twenty Years of Document Image Analysis”, IEEE Trans. PAMI, Vol. 22, No.1 pp. 38-62,
2000.

[6] Liang, J., “Document Structure Analysis and Performance Evaluation”, PhD Dissertation, University of
Washington, 1999.

[7] Wooldridge, M., “Agent-based software engineering”, IEEE proceedings of Software Engineering 144,
1999, 26-37.

[8] Nicolas R. Jennings, “An Agent-based Approach for building Complex Software Systems”,
Communications of the ACM magazines, April 2001-Vol. 44, No. 4.

[9] Saleh, M., “An Intelligent Technique for Document Coding”, Ph. D. Thesis, Mansoura University, Egypt,
2000.

[10 A white paper, “Mobile Agent Computing”, Mitsubishi Electric, ITA, January 19, 1998.
[11] Kamel, M., and Zhao, A., “Extraction of Binary Character/Graphics Images from Grayscale Document

Images”, Graphical Models and Image Processing (CVGIP), Vol.55, No.3, 1993.
[12] Krishnamoorthy, M., Nagy, G., Seth, S., and Viswanathan, M., “syntactic Segmentation and Labeling

of Digitized Pages from Technical Journals”, IEEE Trans. Pattern Analysis and Machine Intelligence,
Vol. 15, No. 7, 1993.

[13] Wong, K. Y., Casey, R. G. and Wahl, F. M., “Document Analysis System”, IBM J. Res. Develop, vol. 6
pp.642-656, Nov. 1982.

[14] Fletcher, L. A. and Kasturi, R., “A Robust Algorithm for Text String Separation from Mixed
text/graphics Images”, IEEE Trans. Pattern Analysis and Machine Intelligence., Vol. 10, No. 6, pp. 910-
918, 1988.

[15] Wang, D. and Srihari, S. N., “Classification of Newspaper Image Blocks Using Texture Analysis”,
Computer Vision, Graphics, Image Processing, Vol. 47, pp.327-352,1989.

 558

 على تقنية الوكيليمبنالنظام تحليل المستندات

 كمال جمبي، مصطفى صالح ، حسنين البرهمتوشي ، فتحي عيسى ، أحمد عز
 قسم هندسة الحاسبات ، كلية العلوم

 جامعة الملك عبدالعزيز ، جدة ، المملكة العربية السعودية

اد على تقنية الوكيل، ومن ثم اسـتنتاج يهدف هذا البحث إلى تحليل صور المستندات بالاعتم . المستخلص

،)الأجزاء(وتبنى فكرة التحليل على تقسيم المستند لمجموعة من الشرائح الأفقية . التركيب الهندسي للمستند
والتي تسهل عملية التحليل حيث يعالج كل جزء دون الحاجة لوجود الجزء الآخـر، بغـرض الاسـتفادة

واستخدمت آلية الوكيـل لإمكانيـة . وأثناء تحميل المستند من الإنترنت القصوى من الذاكرة أثناء التشغيل
 .وأظهرت النتائج كفاءة النظام المقدم. تشغيل النظام خلال شبكة

