

(5.3) The Fundamental Theorem of Calculus

Home work 7-43 (odd), 59-63 (odd)

Dr. Rola Asaad Hijazi

students

Introduction

The Fundamental Theorem of Calculus is appropriately named because it establishes a Connection between the two branches of calculus:

Newton's mentor at Cambridge, Isaac Barrow (1630 –1677), discovered that these two problems are actually closely related. In fact, he realized that differentiation and integration are inverse processes.

The Fundamental Theorem of Calculus Part (1)

If f is continuous on [a, b], and g is defined by

$$g(x) = \int_{a}^{x} f(t)dt$$
 $a \le x \le b$

Then

Then

Then

- g(x) is continuous on [a,b]
- and differentiable on (a,b)

$$g'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

- We abbreviate this theorem as FTC1.
- If x is a function of x : u(x), then we have

$$g'(x) = \frac{d}{dx} \int_{a}^{u(x)} f(t)dt = f(u(x)).u'(x)$$

تَفَاضِلَ التَّكَامِلَ . تَفَاضِلَ العَرِ الْمُعلِى

الن*ظرية* ال*ى سية تىربط* بين اتن*فا*ضل وانت*كا*مل

Example (2):

Find the derivative of the function

$$g(x) = \int_0^x \sqrt{1 + t^2} dt$$

Example (4):

Find
$$\frac{d}{dx} \int_{1}^{x^4} \sec t \ dt$$

FTC 1
$$\frac{d}{dx} \int_{a}^{u(x)} f(t) dt = f(u(x)). u'(x)$$

$$\vec{a} = \int_{a}^{u(x)} f(t) dt = f(u(x)). \vec{a} = \int_{a}^{u(x)} f(t) dt = \int_{a}^{$$

The Fundamental Theorem of Calculus Part (2)

In Section 5.2 we computed integrals from the definition as a limit of Riemann sums and we saw that this procedure long and difficult. The second part of the Fundamental Theorem, which follows easily from the first part, provides us with a much simpler method for the evaluation of integrals.

If f is continuous on [a, b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
antiderivative
Where $F' = f$

- We abbreviate this theorem as FTC2.
- صده انظریہ نحل ات*ت*کامل ان*تحدود و*إنہ *عبار* عن إیجاد antiderivative

$$\int_{a}^{b} f(x)dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

The Fundamental Theorem of Calculus Part (1)

If f is continuous on [a,b], and g is defined by

$$g(x) = \int_{a}^{x} f(t)dt$$
 $a \le x \le b$ التك مل يعني الم حة تمت المنعنى

- g(x) is continuous on [a,b]
- and differentiable on (a,b)

$$g'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

FTC1

The Fundamental Theorem of Calculus Part (2)

If f is continuous on [a, b], then

FTC2

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
Where $F' = f$

In Section 5.2 we computed integrals from the definition as a limit of Riemann sums and we saw that this procedure long and difficult. The second part of the FTC 2, which follows easily from the first part, provides us with a much simpler method for the evaluation of integrals.

ل*نظري*ۃ اہ*ٰ ۔ بيۃ تربط* بدرے ات*تفاضل واتتڪامل*

$$\int_{1}^{3} e^{x} dx$$

Example (6):

Find the area under the parabola $y = x^2$ From 0 to 1.

If you compare the calculation in Example 6 with the one in Example 5.1.2, you will see that the Fundamental Theorem gives a much shorter method.

Example (7):

Evaluate
$$\int_{3}^{6} \frac{1}{x} dx$$

Example (8):

Find the area under the cosine curve from 0 to b, where $0 \le b \le \pi/2$.

Example (9):

What is wrong with the following calculation?

$$\int_{-1}^{3} \frac{1}{x^2} dx = \frac{x^{-1}}{-1} \Big|_{-1}^{3} = -\frac{4}{3}$$

Exersice (35):

Evaluate
$$\int_{1}^{2} \frac{v^3 + 3v^6}{v^4} dv$$

Exercise (63):

Find the derivative of the function.

$$y = \int_{\cos x}^{\sin x} \ln(1+2v) \, dv$$