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_Introduction

The Fundamental Theorem of Calculus is appropriately named because
it establishes a Connection between the two branches of calculus:

Differential Calculus \vv\'ea\ra\ Calculus

Differential calculus arose Integral calculus arose the
from the fanqent onb\em areo onb\ew\.

: Newton’s mentor at Cambridge, Isaac Barrow (1630 —1677), discovered :
that these two problems are actually closely related. In fact, he reallzed
that differentiation and integration are inverse processes.
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The Fundamental Theorem

of Caleulus Pavt (1)

If f is continuous on [a, b], and g is defined by {@

g(x) j fdt a<x<b @ We abbreviate this theorem as FTCL1.
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Exowv\P\e (2): Examp\e (49

4

X
Find the derivative of the function Find i j sect dt
1

dx
X
g(x) =f V14 tadt
0

@,

d
FTIC1 fOdt = f(ulx)).u'(x)
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In Section 5.2 we computed integrals from the definition as a limit of Riemann sums
: and we saw that this procedure long and difficult. The second part of the Fundamental :
: Theorem, which follows easily from the first part, provides us with a much simpler :

. method for the evaluation of integrals.

If f is continuous on [a, b], thewn {@

jbf(x)dx = F(b) — F(a) @ We abbreviate this theorem as FTC2.
a

O Swnlyped ol ¢ o 7upbitl oo
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If fis continuous on [a b] and g is
defined by

g(x) jf(t)dt a<x<b

then (

O 3()(3 s contwuous on la,bl
O ond dfferentiable on (a,b)

= g [ B
® /= = j F@O)dt = F(x)
FTC1
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If f is continuous on [a, b], then

b FTC2
ff@ﬂx=ﬂw—Fm)

Where F' = f whidevivative

: In Section 5.2 we computed integrals from :
: the definition as a limit of Riemann sums and
: we saw that this procedure long and difficult. :
: The second part of the FTC 2, which follows :
: easily from the first part, provides us with a
much simpler method for the evaluation of :
: integrals. :
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Example (S5)  Evaluate the integral

3
f eXdx
1
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Example ( 6) Exomple (7%
6
Find the area under the parabola y = x? Evaluate f —dx
From 0 to 1. 3 X
-1
5-1-05 | 05 1 15 2 25 3 35 4 45 5 55 € 65
=0.5
_1.5.
=71
If you compare the calculation in Example 6 5l
with the one in Example 5.1.2, you will see that -
the Fundamental Theorem gives a much shorter
method.
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Exowv\P\e (%) Examp\e (9

Find the area under the cosine curve

. _ _ -
from 0 to b, where 0 < b < /2. What is wrong with the following calculation®

0.5

#
12 0 m/ m @

-0.5
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Exevrsice (35): Exevcise (63):

Evaluate jz v° + 3v° dv Find the derivative of the function.
1 vt sin x
y = j In(1 + 2v) dv
Cos X
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