(5.2) The Definite Integral

Home work 17-20, 35, 39, 41, 42, 47-50,53,59

Dr. Rola Asaad Hijazi
students

Definition of a Definite Integral

If f is a function defined for $a \leq x \leq b$, we divide the interval $[a, b]$ into n subintervals of equal width $\Delta x=\frac{b-a}{n}$. We let $x_{0}=a, x_{1}, x_{2}, \ldots, x_{n}=b$ be the endpoints of these subintervals and we let $x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, \ldots, x_{n}^{*}$ be any sample points in these subintervals, so x_{i}^{*} lies in the $i^{\text {th }}$ subinterval $\left[x_{i-1}, x_{i}\right]$.

Then the definite integral of \boldsymbol{f} from \boldsymbol{a} to \boldsymbol{b} is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided that this limit exists and gives the same value for all possible choices of sample points. If it does exist, we say that f is integrable on $[a, b]$.

The symbol \int was introduced by Leibniz and is called an integral sign.

(2) $\int_{a}^{b} f(x) d x$ is all one symbol. The $d x$ simply indicates that the independent variable is x.

The procedure of calculating an integral is called integration.

The definite integral $\int_{a}^{b} f(x) d x$ is a number; it does not depend on x. In fact, we could use any letter in place of x without changing the value of the integral:

$$
\int_{a}^{b} f(t) d t, \quad \int_{a}^{b} f(z) d z
$$

note 3

The sum $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ that occurs in Definition of a definite integral is called a Riemann sum after the German mathematician Bernhard Riemann (1826 1866).

the Riemann sum $\sum f\left(x_{i}^{*}\right) \Delta x$ is the sum of areas of rectangles.

If $f(x) \geq 0$, the integral $\int_{a}^{b} f(x) d x$
is the area under the curve $y=f(x)$ from a to b.

The area that lies above the x-axis is $+v e$.

We have defined the definite integral for an integrable function, but not all functions are integrable (see Exercises 71-72). The following theorem shows that the most commonly occurring functions are in fact integrable.

Theorem (3)

If f is continuous on $[a, b]$, or if f has only a finite number of jump discontinuities, then f is integrable on $[a, b]$; that is, the definite integral $\int_{a}^{b} f(x) d x$ exists.

Theorem (4)

If f is integrable on $[a, b]$, then

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \\
& \text { where } \Delta x=\frac{b-a}{n} \\
& \text { and } x_{i}=a+i \Delta x
\end{aligned}
$$

Example I

Express $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(x_{i}^{3}+x_{i} \sin x_{i}\right) \Delta x$ as an integral on the interval $[0, \pi]$.

Example 4

Evaluate the following integrals by interpreting each in terms of areas.
(a) $\int_{0}^{2} \sqrt{4-x^{2}} d x$
(a) $\int_{0}^{4} \sqrt{16-x^{2}} d x$

(b) $\int_{0}^{3}(x-1) d x$

Assume that f and g are continuous functions.
(1) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(2) $\int_{a}^{a} f(x) d x=0$
(3) $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$

(5) $\int_{a}^{b}\left(f(x) \pm g(x) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x\right.$
(6) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x$

Example 6
Use the properties of integrals to evaluate

$$
\begin{aligned}
& \int_{0}^{1}\left(4+3 x^{2}\right) d x \\
& \int_{0}^{1}(4+3(x-1)) d x
\end{aligned}
$$

Example 7

If $\int_{0}^{10} f(x) d x=17$ and $\int_{0}^{8} f(x) d x=12$,
Find $\int_{8}^{10} f(x) d x$.

Comparison Properties Integral

Example 8

These properties are true only if $a \leq b$.
Use property 9 to estimate $\int_{0}^{1} e^{-x^{2}} d x$
(7) If $f(x) \geq 0$ for $a \leq x \leq b$

$$
\text { then } \int_{a}^{b} f(x) d x \geq 0
$$

8) If $f(x) \geq g(x)$ for $a \leq x \leq b$ then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
(9) If $m \leq f(x) \leq M$ for $a \leq x \leq b$ Then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$

Exercise 39

Evaluate the integral by interpreting it in terms of areas.

$$
\int_{-1}^{2}|x| d x
$$

Exercise 50
Find $\int_{0}^{5} f(x) d x$ if

Evaluate the integral by interpreting it in terms of areas.

Exercise 37
 $\int_{-3}^{0} 1+\sqrt{9-x^{2}} d x$

Exercise 35
$\int_{2}^{4}(1-x) d x$

