(5.1) Areas And Distances

Dr. Rola Asaad Hijazi

The Area Problem

Find the area of the region S that lies under the curve $y=f(x)$ from a to b. This means that S, is bounded by the graph of a continuous function f [where $f(x)>0$], the vertical lines $x=a$ and $x=b$, and the x-axis.

In trying to solve the area problem we have to ask ourselves: What is the meaning of the word area?
This question is easy to answer for regions with straight sides.
For a rectangle, the area is defined as the product of the length and the width. The area of a triangle is half the base times the height. The area of a polygon is found by dividing it into triangles and adding the areas of the triangles.

$$
A=l w
$$

$A=\frac{1}{2} b h$

$A=A_{1}+A_{2}+A_{3}+A_{4}$

However, it isn't so easy to find the area of a region with curved sides.

We first approximate the region S by rectangles and then we take the limit of the areas of these rectangles as we increase the number of rectangles. The following example illustrates the procedure.

Example (1): Use rectangles to estimate the area under the parabola $y=x^{2}$ from 0 to 1

(a)

(b)

(c)

- We divide S into four strips S_{1}, S_{2}, S_{3}, and S_{4} by drawing the vertical lines $x=\frac{1}{4}, x=\frac{1}{2}$, and $x=\frac{3}{4}$ as in Figure (b).
- We approximate each strip by a rectangle that has the same base as the strip and whose height is the same as the right edge of the strip [see Figure (c)].

Each rectangle has width $\frac{1}{4}$ and the heights are $\left(\frac{1}{4}\right)^{2},\left(\frac{1}{2}\right)^{2},\left(\frac{3}{4}\right)^{2},(1)^{2}$

Let $R_{4}=R_{1}+R_{2}+R_{3}+R_{4}$

$$
\begin{aligned}
& =\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{2}+\left(\frac{1}{4}\right)(1)^{2} \\
& =\frac{15}{32}=0.46875
\end{aligned}
$$

From Figure (c) we see that the area A of S is less than R_{4}, so

- We divide S into four strips S_{1}, S_{2}, S_{3}, and S_{4} by drawing the vertical lines $x=\frac{1}{4}, x=\frac{1}{2}$, and $x=\frac{3}{4}$ as in Figure (b).
- We approximate each strip by a rectangle that has the same base as the strip and whose height is the same as the left endpoints of the strip [see Figure (d)].

Each rectangle has width $\frac{1}{4}$ and the heights are $(0)^{2},\left(\frac{1}{4}\right)^{2},\left(\frac{1}{2}\right)^{2},\left(\frac{3}{4}\right)^{2}$

Let $L_{4}=L_{1}+L_{2}+L_{3}+L_{4}$

$$
\begin{aligned}
& 0+\frac{1}{4}\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{2} \\
& =\frac{7}{32}=0.21875
\end{aligned}
$$

From Figure (d) we see that the area A of S is larger than L_{4}, so

(d)

(c)

$$
A<0.46875
$$

$0.21875<A<0.46875$

The width of the interval $[a, b]$ is $b-a$.

- So the width of each of the n - strips is

$$
\text { base } \Delta x=\frac{b-a}{n}
$$

- The height of the rectangle $=f\left(x_{i}\right)$

- The area of the $i^{\text {th }}$ rectangle $=f\left(x_{i}\right) \Delta x$.
- Area of $S=R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x$
- Notice that this approximation appears to become better and better as the number of strips increases, that is, as $n \rightarrow \infty$.Therefore we define the area A of the region S in the following way.

Definition The area A of the region S that lies under the graph of the continuous function f is the limit of the sum of the areas of approximating rectangles:

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right]=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

