
(4.9) Antiderivatives

Home work 1-47 (odd)

Dr. Rola Asaad Hijazi

Antidervative

Definition

A function F is called an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

Theorem

If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is $F(x)+C$ where C is an arbitrary constant.

Members of the family of antiderivatives of $f(x)=x^{2}$

Table of Antidifferentiation Formulas

Function	Particular antiderivative	Function	Particular antiderivative
$c f(x)$	$c F(x)$	$\sin x$	$-\cos x$
$f(x)+g(x)$	$F(x)+G(x)$	$\sec ^{2} x$	$\tan x$
$x^{n}(n \neq-1)$	$\frac{x^{n+1}}{n+1}$	$\sec x \tan x$	$\sec x$
$\frac{1}{x}$	$\ln \|x\|$	$\frac{1}{\sqrt{1-x^{2}}}$	$\sin ^{-1} x$
e^{x}	$\frac{b^{x}}{\ln b}$	$\sin x$	$\cosh x$
b^{x}	$\sinh x$	$\sinh x$	
$\cos x$		$\cosh x$	

To obtain the most general antiderivative from the particular ones in Table 2, we have to add a constant (or constants), as in Example I.

Example (1):

Find the most general antiderivative of each of the following functions.
(a) $f(x)=\sin x$
(b) $f(x)=\frac{1}{x}$
(c) $f(x)=x^{n}, \quad n \neq 1$

Example (2): Find all functions g such that

$$
g^{\prime}(x)=4 \sin x+\frac{2 x^{5}-\sqrt{x}}{x}
$$

We often use a capital letter F to represent an antiderivative of a function f. If we begin with derivative notation, f^{\prime}, an antiderivative is f.

Example (3): \quad Find f if

$$
f^{\prime}(x)=e^{x}+20\left(1+x^{2}\right)^{-1} \text { and } f(0)=-2
$$

Example (4):

Find f if

$$
\begin{aligned}
& f^{\prime \prime}(x)=12 x^{2}+6 x-4 \\
& f(0)=4 \quad \text { and } f(1)=1
\end{aligned}
$$

Rectilienear Motion

Antidifferentiation is particularly useful in analyzing the motion of an object moving in a straight line.

Recall that if the object has position function $s=f(t)$, then the velocity function is $v(t)=s^{\prime}(t)$. This means that the position function is an antiderivative of the velocity function.

Likewise, the acceleration function $a(t)=v^{\prime}(t)$, so the velocity function is an antiderivative of the acceleration.

If the acceleration and the initial values $s(0)$ and $v(0)$ are known, then the position function can be found by antidifferentiating twice.

Recall That:

$$
\begin{aligned}
& a(t) \longrightarrow v(t) \xrightarrow{\text { antiderivative }} \quad \begin{array}{l}
\text { antiderivative } \\
\end{array}
\end{aligned}
$$

Displacement
Velocity
Acceleration

antiderivative
Integration $=\int$

antiderivative Integration $=\int$

Example (6):

A particle moves in a straight line and has acceleration given by $a(t)=6 t+4$. Its initial velocity is $v(0)=-6 \mathrm{~cm} / \mathrm{s}$ and its initial displacement is $s(0)=9 \mathrm{~cm}$. Find its position function $s(t)$.

Find the most general antiderivative of the function. (Check your answer by differentiation.)

Exercise (5):

$$
f(x)=x(12 x+8)
$$

Exercise (9): $\quad f(x)=\sqrt{2}$

Exercise (15):

$$
g(t)=\frac{1+t+t^{2}}{\sqrt{t}}
$$

