Chapter (2) Motion in a straight line

Outline

Learning outcomes

After studying this chapter, you will be able:

1. Understand SI units, scientific notation, prefix, unit conversion
2. Determine the direction and magnitude of a particle's position vector from its components, and vice versa.
3. Apply the relationship between particle's displacement vector and its initial and final position vectors.
4. Indicate velocity vector in unit vector notation.
5. Determine the direction and magnitude of a particle's velocity vector from its components, and vice versa.
6. Given a particle's position vector as a function of time, determine its instantaneous velocity vector.
7. Determine the direction and magnitude of a particle's acceleration vector from its components, and vice versa.
8. Determination of average acceleration vector in unit-vector notations
9. Given a particle's velocity vector as a function of time, determine its instantaneous acceleration vector.
10. Apply the constant acceleration equations to find acceleration, velocity, position, and time.
11. understand the free fall equations.

Background (SI System of Units)

- The international system of units is abbreviated SI:
- Used for scientific work around the world.
- The seven base units are:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Table 1.1 Unit Names and Abbreviations for the Base Units of the SI System of Units

Unit	Abbreviation	Base Unit for
meter	m	length
kilogram	kg	mass
second	s	time
ampere	A	current
kelvin	K	temperature
mole	mol	amount of a substance
candela	cd	luminous intensity

Background (Scientific Notation)

\square Dealing with really big numbers or really small numbers can be difficult.
To deal with big and small numbers we use

scientific notation:

$$
\text { Number }=\text { mantissa. } 10^{\text {exponent }}
$$

$>$ The mantissa is usually chosen so that it has one digit preceding the decimal point, but not always.

$$
\text { e.g. } 3.00 \times 10^{8} \text {. }
$$

\square Multiplication and division are simplified using scientific notation:

$$
\text { e.g. }\left(7 \times 10^{27}\right)\left(7 \times 10^{9}\right)=49 \times 10^{36}=4.9 \times 10^{37}
$$

Background (Prefix)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 1.3

 SI Standard Prefixes| Factor | Prefix | Symbol | Factor | Prefix |
| :--- | :--- | :--- | :--- | :--- |
| 10^{24} | yotta- | Y | 10^{-24} | yocto- |
| 10^{21} | zetta- | Z | 10^{-21} | zepto- |
| 10^{18} | exa- | E | 10^{-18} | atto- |
| 10^{15} | peta- | P | 10^{-15} | femto- |
| 10^{12} | tera- | T | 10^{-12} | pico- |
| 10^{9} | giga- | G | 10^{-9} | nano- |
| 10^{6} | mega- | M | 10^{-6} | micro- |
| 10^{3} | kilo- | k | 10^{-3} | milli- |
| 10^{2} | hecto- | h | 10^{-2} | centi- |
| 10^{1} | deka- | da | 10^{-1} | deci- |

\square Prefix represents a certain power of 10 , to be used as a multiplication factor.

Attaching a prefix to an (SI) unit has the effect of multiplying by the associated factor

Symbol

Prefix	Symbol	Factor
Tera-	T	10^{12}
Giga-	G	10^{9}
Mega-	M	10^{6}
Kilo-	K	10^{3}
Centi-	c	10^{-2}
Milli-	m	10^{-3}
Micro-	m	10^{-6}
Nano-	n	10^{-9}
Pico-	p	10^{-12}

Background

Examples:
Remember!

Background (Unit conversion)

To locate an object means to find it's position relative to a reference point origin (or zero point) of an axis.

All position vectors are measured relative to the origin of the coordinate system.

- SI-unit "m" (it's a length unit)
\square Position is a vector quantity: has a magnitude and a direction.

Direction	Positive \Rightarrow if it is right to the reference point Negative \Rightarrow if it is left to the reference point

Position vector in one dimension

On X-axis

Left to Ref. Point (Negative direction)

Right to Ref. Point (Positive direction)

Position left to the reference point ($x=-3 \mathrm{~cm}$)
Position right to the reference point $(x=2 \mathrm{~cm})$

Position up the reference point $(y=2 c m)$
Position below the reference point $(y=-4 \mathrm{~cm})$

2.2
 Position vector

Position vector in three dimensions

- Position vector is denoted with \vec{r}
- Written in a unit vector notation in 3D as:

$$
\vec{r}=(x) \hat{\imath}+(y) \hat{\jmath}+(z) \hat{\mathrm{k}}
$$

Write a position vector

In three dimension

$$
\vec{r}=-3 \hat{\imath}+2 \hat{\jmath}+5 \hat{k}
$$

Write a position vectors in x-direction (1D)
Left to the reference point $\vec{r}=-3 \hat{\imath}$ OR $\mathrm{x}=-3 \mathrm{~cm}$
Right to the reference point $\vec{r}=2 \hat{i} O R x=2 \mathrm{~cm}$
Up the reference point $\vec{r}=2 \hat{\jmath}$ OR $y=2 \mathrm{~cm}$
Below the reference point $\vec{r}=-4 \hat{\jmath}$ OR $y=-4 \mathrm{~cm}$

Position vector in one dimension as a function in time

- If the object move \rightarrow the position of an object can change as a function of time
- If the motion in one dimension, this mean that the x -component of the vector is a function of time $\rightarrow x(t)$
- If we want to specify the position at some specific time, we use the notation At $t_{1} \rightarrow x\left(t_{1}\right)=x_{1}$

Example:

x-component of a position vector as a function of time $x(t)=(3 t+5)$
Where x is the position and t is the time

Position vector in three dimensions as a function in time

$\vec{r}(t)=x(t) \hat{\imath}+y(t) \hat{\jmath}+z(t) \hat{\mathrm{k}}$
$\vec{r}(t)=(3 t+1) \hat{\imath}+(2 t) \hat{\jmath}+\left(t^{2}+5\right) \hat{\mathrm{k}}$

However, it's a valid way of expressing a position by only x -component if it is in 1 D only

Position vector in $1 D: \vec{r}(t)=(3 t+5) \hat{\imath} \mathrm{OR} x(\mathrm{t})=3 \mathrm{t}+5$

- Displacement refers to 'how far out of place an object is" from its origin or starting point
- It is the object's overall change in position \rightarrow Is the difference between final position and initial position
- SI-unit "m"
- The displacement vector on one dimension has only one component for example x-component, which is the difference between the x-component of the final and initial position vectors

$$
\Delta x=x_{f}-x_{i}
$$

- Displacement is a vector quantity: has magnitude and direction.
- Direction: if Δx is positive \Rightarrow moving to the right if Δx is negative \Rightarrow moving to the left

Displacement vector in three dimensions

$$
\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1}
$$

$$
\begin{gathered}
\Delta \vec{r}=\left(x_{2}-x_{1}\right) \hat{\imath}+\left(y_{2}-y_{1}\right) \hat{\jmath}+\left(z_{2}-z_{1}\right) \hat{\mathrm{k}} \\
\Delta \vec{r}=\Delta x \hat{\imath}+\Delta y \hat{\jmath}+\Delta z \hat{\mathrm{k}}
\end{gathered}
$$

2.2
 Displacement vector

Displacement vector in one dimension

On X-axis

Moving to the left

$$
\Delta x=x_{f}-x_{i}
$$

$$
\Delta x=(-2)-(2)=-4 \mathrm{~cm}
$$

Write a displacement vector in x -direction (1D)
Moving to the left $\overrightarrow{\Delta r}=-4 \hat{\imath}$

However, it's a valid way of expressing a

displacement as; $\Delta x=-4 \mathrm{~cm}$; its understood that it refers to the x -component of the displacement vector

On y-axis

Write a displacement vector in y-direction(1D) Moving down $\overrightarrow{\Delta r}=-7 \hat{\jmath}$

However, it's a valid way of expressing a displacement as; $\Delta y=-7 \mathrm{~cm}$; its understood that it refers to the y-component of the displacement vector

velocity vector in one dimension

Average velocity

- The average velocity is The ratio of displacement per time interval

$$
\text { In x-direction } \quad \overline{v_{x}}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}(\mathrm{~m} / \mathrm{s})
$$

- Average velocity vector in only x-direction $\overrightarrow{\bar{v}}=\left(\frac{\Delta x}{\Delta t}\right) \hat{1}$
- Velocity is a vector quantity: has magnitude and direction.
- Direction: if velocity is positive \Rightarrow moving to the right
if velocity is negative \Rightarrow moving to the left

Average velocity vector in three dimensions

$$
\vec{v}=\frac{\overrightarrow{\Delta r}}{\Delta t}=\frac{\Delta x \hat{\imath}+\Delta y \hat{\jmath}+\Delta z \widehat{\mathrm{k}}}{\Delta t}=\frac{\Delta x}{\Delta t} \hat{\imath}+\frac{\Delta y}{\Delta t} \hat{\jmath}+\frac{\Delta z}{\Delta t} \hat{\mathrm{k}}=\overline{v_{x}} \hat{\imath}+\overline{v_{y} \hat{\jmath}}+\overline{v_{z}} \hat{\mathrm{k}}
$$

the operation applies to each of the components of the vector

velocity vector in one dimension

Instantaneous velocity

- The instantaneous velocity It describes the velocity at a very specific time
- Is obtained in the limit that the time interval for the averaging procedure approaches 0 (time derivate of the displacement)

In x-direction $\left.v_{x}=\lim _{\Delta t \rightarrow 0} \bar{v}_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t} \equiv \frac{d x}{d t} \right\rvert\,(m / s)$
instantanouse velocity vector $\vec{v}=\left(\frac{d x}{d t}\right) \hat{\imath}$

Instantons velocity vector in three dimensions

$$
\vec{v}=\frac{\overrightarrow{d r}}{d t}=\frac{d x \hat{\imath}+d y \hat{\jmath}+d z \hat{\mathrm{k}}}{d t}=\frac{d x}{d t} \hat{\mathrm{\imath}}+\frac{d y}{d t} \hat{\jmath}+\frac{d z}{d t} \widehat{\mathrm{k}}=v_{x} \hat{\imath}+v_{y} \hat{\jmath}+v_{z} \hat{\mathrm{k}}
$$

the derivative operation applies to each of the components of the vector

Instantaneous Speeds

- Is The magnitude of instantaneous velocity.
- Is the absolute value of the velocity vector.

$$
\text { Instantaneous speed = |Instantaneous velocity } \mid
$$

- A scalar quantity (has no direction)
- Always positive

Speed limits are always posted as positive numbers, and the radar monitors that measure the speed of passing cars also always display positive numbers

Example 2.1 (Page 44)

During the time interval 0 to 10 s , the position vector of a car on the road is given by:

$$
x(t)=17.2-10.1 t+1.1 t^{2}
$$

(a) What is the position vector at $\mathrm{t}=0 \mathrm{~s}$?
(b)What is its instantaneous velocity vector at $\mathrm{t}=6 \mathrm{~s}$?
(c) What is the car's average velocity during this interval (from 0s to 10s)?

SOLUTION:

(a)

$$
\begin{array}{r}
\vec{r}(t)=\left(17.2-10.1 t+1.1 t^{2}\right) \hat{\imath} \\
\text { At } \mathrm{t}=0 \rightarrow \vec{r}(0)=(17.2-10.1(0)+1.1(0)) \hat{\imath} \\
\vec{r}(0)=17.2 \mathrm{~m} \hat{\imath}
\end{array}
$$

(b) Take derivative to get the instantaneous velocity vector:

$$
\begin{aligned}
v_{x}(t)=\frac{d x}{d t}=\frac{d}{d t}(17.2 & \left.+10.1 t+1.1 t^{2}\right)=-10.1+2.2 t \\
\vec{v}(t) & =(-10.1+2.2 t) \hat{\imath} \\
\text { At } t=6 \rightarrow \vec{v}(t)=(-10.1+2.2 t) \hat{\imath} \rightarrow \vec{v}(6) & =(-10.1+(2.2 \times 6)) \hat{\imath}=3.1^{\mathrm{m}} / \mathrm{s} \hat{\imath}
\end{aligned}
$$

Example 2.1 (Page 44)

SOLUTION

(c) WE know that:

$$
\begin{aligned}
& >x(t)=17.2-10.1 t+1.1 t^{2} \\
& >\vec{v}(t)=(-10.1+2.2 t) \hat{\imath}
\end{aligned}
$$

The average velocity $\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{2}}{t_{2}-t_{1}}$

- At $t_{2}=10 \mathrm{~s} \rightarrow x_{2}=? x(t)=17.2-10.1 t+1.1 t^{2}$

$$
x(10)=17.2-10.1(10)+1.1(10)^{2}=26.2 \mathrm{~m}
$$

- At $t_{1}=0 \mathrm{~s} \rightarrow x_{1}=? x(0)=17.2 \mathrm{~m}$ (calculated from (a))

The average velocity $\bar{v}=\frac{\Delta x}{\Delta t}=\frac{26.2-17.2}{10-0}=\frac{9}{10}=0.9 \mathrm{~m} / \mathrm{s}$

acceleration vector in one dimension

Average acceleration

- The average acceleration is defined as the velocity change per time interval

$$
\text { In x-direction } \quad \bar{a}_{x}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{x 2}-v_{x 1}}{t_{2}-t_{1}}\left(\mathrm{~m} / \mathrm{s}^{2}\right)
$$

- The velocity changes could be in (magnitude, or direction), to be able to say the particle undergoes an acceleration
- Average acceleration vector $\overrightarrow{\bar{a}}=\left(\frac{\Delta v_{x}}{\Delta t}\right) \hat{1}$

Average acceleration vector in three dimensions

$$
\overrightarrow{\bar{a}}=\frac{\overrightarrow{\Delta v}}{\Delta t}=\frac{\Delta v_{x} \hat{\imath}+\Delta v_{y} \hat{\jmath}+\Delta v_{z} \widehat{\mathrm{k}}}{\Delta t}=\frac{\Delta v_{x}}{\Delta t} \hat{\imath}+\frac{\Delta v_{y}}{\Delta t} \hat{\jmath}+\frac{\Delta v_{z}}{\Delta t} \hat{\mathrm{k}}=\overline{a_{x}} \hat{\imath}+\overline{a_{y}} \hat{\jmath}+\overline{a_{z}} \hat{\mathrm{k}}
$$

the operation applies to each of the components of the vector

acceleration vector in one dimension

Instantaneous acceleration

- The instantaneous acceleration describes the acceleration at a very specific time
- Is defined as the limit of the average acceleration as the time interval approaches 0 (time derivate of the velocity)

OR
in 1D (x-axis) its
x-component $a_{x}=\lim _{\Delta t \rightarrow 0} \bar{a}_{x}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v_{x}}{\Delta t} \equiv \frac{d v_{x}}{d t}$
instantaneous acceleration vector $\vec{a}=\left(\frac{d v_{x}}{d t}\right) \hat{1} \quad a_{x}=\frac{d v_{x}}{d t}$

Instantons acceleration vector in three dimensions

$$
\vec{a}=\frac{\overrightarrow{d v}}{d t}=\frac{d v_{x} \hat{\imath}+d v_{y} \hat{\jmath}+d v_{z} \widehat{\mathrm{k}}}{d t}=\frac{d v_{x}}{d t} \hat{\imath}+\frac{d v_{y}}{d t} \hat{\jmath}+\frac{d v_{z}}{d t} \hat{\mathrm{k}}=a_{x} \hat{\imath}+a \hat{\jmath}+a \hat{\mathrm{k}}
$$

the derivative operation applies to each of the components of the vector
2.4 Acceleration Concepts
\square Deceleration of an object: is a decrease in the speed of the object over time.
\square If the velocity and acceleration are in the same direction, the object speeds up.
\square If the velocity and acceleration are in opposite directions, the object slows down.

Velocity	Acceleration	Motion
+	+	Speeding up in the positive direction
-	-	Speeding up in the negative direction
+	-	Slowing down in the positive direction
-	+	Slowing down in the negative direction

Concept Check

- When you're driving a car along a straight road, you could be traveling in the positive or negative direction and you could have a positive acceleration or a negative acceleration.

If you have negative velocity and positive acceleration you are:
A. slowing down in the positive direction.
B. speeding up in the negative direction.
C. speeding up in the positive direction.
D. slowing down in the negative direction.

Exercise 2.37 (page 62)

-2.37 The position of an object as a function of time is given as
$x=A t^{3}+B t^{2}+C t+D$. The constants are $A=2.10 \mathrm{~m} / \mathrm{s}^{3}, B=1.00 \mathrm{~m} / \mathrm{s}^{2}$,
$C=-4.10 \mathrm{~m} / \mathrm{s}$, and $D=3.00 \mathrm{~m}$.
a) What is the velocity of the object at $t=10.0 \mathrm{~s}$?
b) At what time(s) is the object at rest?
c) What is the acceleration of the object at $t=0.50 \mathrm{~s}$?

SOLUTION:

(a) The velocity is given by the time derivative of the position function

$$
\begin{aligned}
v(t)=\frac{d}{d t} \mathrm{x}(\mathrm{t})=\frac{d}{d t}\left(2.1 t^{3}+\right. & \left.(1) t^{2}+(-4.1) t+(3)\right)=3(2.1) t^{2}+2(1) t+(-4.1) \\
& v(t)=6.3 t^{2}+2 t-4.1 \\
\text { At } \mathrm{t}=10 \mathrm{~s} \rightarrow & v(10)=(6.3)\left(10^{2}\right)+(2)(10)-4.1 \\
& =645.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Exercise 2.37 (page 62)

SOLUTION:

(b) To find the time when the object is at rest, set the velocity to zero, and solve for time; t .

$$
\begin{aligned}
& v(t)=6.3 t^{2}+2 t+-4.1 \\
& 0=6.3 t^{2}+2 t-4.1 \\
& 6.3 t^{2}+2 t-4.1=0
\end{aligned}
$$

This is a quadratic equation of the form $a x^{2}+b x+c=0$, whose solution is

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Where, $a=6.3$

$$
b=2
$$

$$
\mathrm{c}=-4.1
$$

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2(2) \pm \sqrt{(2 x 2)^{2}-4(6.3)(-4.1)}}{2(6.3)}=
$$

$$
t=0.664 s
$$

$$
\mathrm{OR}, t=-0.981 s
$$

Exercise 2.37 (page 62)

SOLUTION:

(c) The acceleration is given by the time derivative of the velocity

$$
\begin{aligned}
\mathrm{a}(t)=\frac{d}{d t} \mathrm{v}(\mathrm{t})=\frac{d}{d t}\left(6.3 t^{2}+2 t-4.1\right) & =12.6 t+2 \\
\text { At } \mathrm{t}=0.5 \mathrm{~s} & \rightarrow \mathrm{a}(0.5)=(12.6)(0.5)+2 \\
= & 8.3 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Many physical situations involve constant acceleration .
\square Constant acceleration does not mean the velocity is constant.
\square Constant acceleration means the velocity changes with constant rate.
\square If $\mathrm{v}=$ constant $\rightarrow \mathrm{a}=0$.
\square If v changes with constant rate $\rightarrow \mathrm{a}=$ constant

2.7 Constant Acceleration

- We can derive useful equations for the case of constant acceleration.
- The Five Kinematic Equations

Equation	Missing Quantity
$v=v_{0}+a t$	$x-x_{0}$
$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$	v
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	t
$x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$	a
$x-x_{0}=v t-\frac{1}{2} a t^{2}$	v_{0}

Remarks

\square When the object starts from rest $v_{0}=0$
\square When the object stops $v=\mathbf{O}$
$x_{0}=0$ unless somathing ase mentioned

Solved problem 2.2 (page 46)

Assuming a constant acceleration of $a=4.3 \mathrm{~m} / \mathrm{s}^{2}$, starting from rest:
(a) what is the speed of the airplane reached after 18 seconds?
(b) How far down the runway has this airplane moved by the time it takes off?

SOLUTION:

(a)

Given $\left\{\begin{array}{l}a=4.3 \mathrm{~m} / \mathrm{s}^{2} \\ v_{\mathrm{o}=} 0 \\ t=18 \mathrm{~s}\end{array}\right.$
At $t=18 s$

$$
v=v_{\mathrm{o}}+a t=0+(4.3)(18)=77.4 \mathrm{~m} / \mathrm{s}
$$

$\mathrm{S}=|77.4|=77.4 \mathrm{~m} / \mathrm{s}$

Solved problem 2.2 (page 46)

Assuming a constant acceleration of $a=4.3 \mathrm{~m} / \mathrm{s}^{2}$, starting from rest:
(a) what is the speed of the airplane reached after 18 seconds?
(b) How far down the runway has this airplane moved by the time it takes off?

SOLUTION:

(b)

$$
\begin{gathered}
v=v_{0}+a t \\
x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \\
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t \\
x-x_{0}=v t-\frac{1}{2} a t^{2}
\end{gathered}
$$

At $t=18 s$

$$
x=x_{\circ}+v_{\circ} t+1 / 2 a t^{2}=0+(0)(18)+\frac{1}{2}(4.3)\left(18^{2}\right)=697 m
$$

- Free fall is the motion of an object under influence of gravity and ignoring any other effects such as air resistance
- Free fall is an example of motion in one dimension with constant acceleration.
- All objects in free fall accelerate downward at the same rate and is independent of the object's mass, density or shape
- Near the surface of the Earth, the acceleration due to the force of gravity is constant and is always in the downward direction.

$$
a=a_{y}=-g
$$

$$
g=9.8 m / s^{2} \quad \text { downward }
$$

2.7
 Constant Acceleration (Free Fall)

Motion along x-axis

motion is along y axis $\rightarrow x=y$

 (Free Fall)$$
\begin{gathered}
v=v_{\mathrm{o}}+a t \\
x-x_{\mathrm{o}}=v_{\mathrm{o}} t+1 / 2 a t^{2} \\
v^{2}=v_{\mathrm{o}}^{2}+2 a\left(x-x_{\mathrm{o}}\right) \\
x-x_{\mathrm{o}}=1 / 2\left(v_{\mathrm{o}}+v\right) t \\
x-x_{\mathrm{o}}=v t-1 / 2 a t^{2}
\end{gathered}
$$

$$
\begin{gathered}
v=v_{\mathrm{o}}+a t \\
\mathrm{y}-y_{\mathrm{o}}=v_{\mathrm{o}} t+1 / 2 a t^{2} \\
v^{2}=v_{\mathrm{o}}^{2}+2 a\left(y-y_{\mathrm{o}}\right) \\
\mathrm{y}-y_{\mathrm{o}}=1 / 2\left(v_{\mathrm{o}}+v\right) t \\
\mathrm{y}-y_{\mathrm{o}}=v t-1 / 2 a t^{2}
\end{gathered}
$$

$$
a=-g=-(9.8)
$$

Extra Exercise

- At a construction site a pipe struck the ground with a velocity of $-24 \mathrm{~m} / \mathrm{s}$. How long was it falling ? $\left(v_{\circ}=0\right)$

SOLUTION:

$$
\left.\begin{array}{l}
\text { Given }\left\{\begin{array}{l}
v=-24 \mathrm{~m} / \mathrm{s} \\
v_{0}=0 \\
t=?
\end{array}\right. \\
\text { From } \quad \\
\qquad v=v_{\mathrm{o}}+a t
\end{array}\right] \begin{aligned}
& t=\frac{v-v_{0}}{a}=\frac{-24-0}{-9.8}=2.45 \text { seconds }
\end{aligned}
$$

Equation summary

Position vector

$$
\vec{r}=(x) \hat{\imath}+(y) \hat{\jmath}+(z) \hat{\mathrm{k}}
$$

Displacement yector $\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1}$
Displacement (1D) $\Delta x=x_{2}-x_{1} \quad\left(x_{1} \equiv x\left(t_{1}\right), x_{2} \equiv x\left(t_{2}\right)\right)$

$$
\text { speed }=v=|\vec{v}|=\left|v_{x}\right|
$$

Equations of motion in x direction
$x=x_{0}+v_{x 0} t+\frac{1}{2} a_{x} t^{2}$
$x=x_{0}+v_{x} t$
$v_{x}=v_{x 0}+a_{x} t$
$v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right)$
$x=x_{0+} v_{x 0} t-\frac{1}{2} a_{x} t^{2}$

Free fall

$$
v=v_{0}+a t
$$

equations

$$
\begin{gathered}
\mathrm{y}-y_{\mathrm{o}}=v_{\mathrm{o}} t+1 / 2 a t^{2} \\
v^{2}=v_{\mathrm{o}}^{2}+2 a\left(y-y_{\mathrm{o}}\right) \\
\mathrm{y}-y_{\mathrm{o}}=1 / 2\left(v_{\mathrm{o}}+v\right) t \\
\mathrm{y}-y_{\mathrm{o}}=v t-1 / 2 a t^{2}
\end{gathered}
$$

$$
\begin{gathered}
\text { The END } \\
\text { OF } \\
\text { CHAPTER } \\
(2)
\end{gathered}
$$

