CALCULUS 110

(1.4) Exponential Function $f(x)=a^{x}$

Dr. Rola Asaad Hijazi

$$
\text { If } x=\left\{\begin{aligned}
& n(+v e) \Rightarrow a^{n}=a \ldots a \\
& 0 \Rightarrow a^{0}=1 \\
&-n \Rightarrow a^{-n}=\frac{1}{a^{n}} \\
& \frac{p}{q} \Rightarrow a^{\frac{p}{q}}=\sqrt[q]{a^{p}} \\
& \text { irrational }, \sqrt{3}, \pi, \ldots \Rightarrow a^{\pi}, a^{\sqrt{3}}, \ldots
\end{aligned}\right.
$$

We have 3 Kinds of exponential functions:

$$
0<a<1, y=\left(\frac{1}{2}\right)^{x}(2) a=1, y=(1)^{x}=1 \text { (1) }
$$

from (1) and (2) it is clear that
$f_{1}(x)=\left(\frac{1}{a}\right)^{x}=a^{-x}$ and $f_{2}(x)=a^{x}$ that f_{1} is the reflection of $f_{2}(x)=a^{x}$ about y-axis

Law of
 Exponents

If a, b are positive numbers and x, y are any real numbers, then:
(1) $a^{x+y}=a^{x} a^{y}$
(2) $a^{x-y}=\frac{a^{x}}{a^{y}}$
(3) $\left(a^{x}\right)^{y}=a^{x y}$
(4) $(a b)^{x}=a^{x} b^{x}$

Example

Sketch the graph of the function $y=3-2^{x}$ and determine its domain and range.

Solution:

The irrational nunmber $e \approx 2.71828$

The following figures show that the slope of the tangent lines of the graph $y=2^{x}$ and $y=3^{x}$ at the point $(0,1) \approx 0.7$ and 1.1 respectively.
(I) $y=2^{x}$

(2) $y=3^{x}$

e : is an irrational number such that the slope of the tangent line of $y=a^{x}$ at $(0,1)=1$.
$e \approx 2.71828$

$$
\begin{aligned}
& D_{f}=---- \\
& R_{f}=----
\end{aligned}
$$

Exercise 2

Exercise 13

Use the law of exponents to rewrite and simplify the expression:
(a) $8^{4 / 3}=$
(b) $x\left(3 x^{2}\right)^{3}=$

Sketch $y=10^{x+2}$
Solution

Exercise 19

Exercise 20

Find the domain of the following functions
(a) $f(x)=\frac{1-e^{x^{2}}}{1-e^{1-x^{2}}}$
solution
(a) $g(t)=\sqrt{10^{t}-100}$
solution
(b) $g(t)=\sin \left(e^{t}-1\right)$
solution

$$
1,3,17
$$

