

(3.6) Derivatives of Logarithmic Functions

In this section we use implicit differentiation to find the derivatives of the logarithmic functions $y = \log_a x$ and, in particular, the natural logarithmic function $y = \ln(x)$. [It can be proved that logarithmic functions are differentiable]

(1)
$$y = \log_a x$$
 $y' = \frac{1}{x \ln a}$
(2) $y = \log_a g(x)$ $y' = \frac{1}{g(x)} \cdot g'(x)$
(3) $y = \ln(x)$ $y' = \frac{1}{x}$
(4) $y = \ln(g(x))$ $y' = \frac{1}{g(x)} \cdot g'(x)$
(5) $y = \ln|x|$ $y' = \frac{1}{x} \forall x \neq 0$
(7) There are 4 cases for
exponents and bases
(9) $y = a^n a, n = constants \Rightarrow y' = 0$
(9) $y = a^n a, n = constants \Rightarrow y' = 0$
(9) $y = (f(x)^n \Rightarrow y' = n(f(x)^{n-1} \cdot f'(x))$
(9) $y = a^{g(x)} \Rightarrow y' = n(f(x)^{n-1} \cdot f'(x))$
(9) $y = a^{g(x)} \Rightarrow y' = a^{g(x)} (\ln a)g'(x)$
(9) $y = (f(x))^{g(x)}$

Example I Find y',
$$y = \ln(x^3 + 1)$$

Find y', $y = \log_{10}(2 + sinx)$
Example 2 Find y', $y = \ln(sinx)$
Example 6 Find y', $y = \ln|x|$
 $y = \ln|x| = \begin{cases} \ln(-x), & x < 0 \\ \ln(x), & x > 0 \end{cases}$
Example 3 Find y', $y = \sqrt{\ln x}$

Logarithmic Differentiation

The calculation of derivatives of complicated functions involving products, quotients or powers, can often be simplified by taking logarithms. The method used in the following example is called **Logarithmic Differentiation**.

Example 7 Find y',
$$y = \frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^5}$$

solution
$$ln\frac{a}{b} = lna - lnb$$
$$lnab = lna + lnb$$
$$lna^r = rlna$$

Dr. Rola Asaad Hijazi