CALCULUS 110
(3.6) Derivatives of Logarithmic Functions

Dr. Rola Asaad Hijazi

Derivatives of Logar thmic functions

In this section we use implicit differentiation to find the derivatives of the logarithmic functions $\mathrm{y}=\log _{a} x$ and, in particular, the natural logarithmic function $y=\ln (x)$. [It can be proved that logarithmic functions are differentiable]
(1) $y=\log _{a} x \quad y^{\prime}=\frac{1}{x \ln a}$
(2) $\mathrm{y}=\log _{a} g(x) \quad y^{\prime}=\frac{1}{g(x)} \cdot g^{\prime}(x)$
(3) $y=\ln (x)$
$y^{\prime}=\frac{1}{x}$
(4) $y=\ln (g(x)) \quad y^{\prime}=\frac{1}{g(x)} \cdot g^{\prime}(x)$
(5) $y=\ln |x| \quad y^{\prime}=\frac{1}{x} \forall x \neq 0$

There are 4 cases for
exponents and bases
($y=a^{n} a, n=$ constants $\Rightarrow y^{\prime}=0$
() $y=\left(f(x)^{n} \Rightarrow y^{\prime}=n\left(f(x)^{n-1} \cdot f^{\prime}(x)\right.\right.$
(1) $y=a^{g(x)} \Rightarrow y^{\prime}=a^{g(x)}(\ln a) g^{\prime}(x)$

$$
y=(f(x))^{g(x)}
$$

Apply In on both sides

Examplel Find $y^{\prime}, y=\ln \left(x^{3}+1\right)$

Example 2 Find $y^{\prime}, y=\ln (\sin x)$

Example $6 \quad$ Find $y^{\prime}, y=\ln |x|$
$y=\ln |x|= \begin{cases}\ln (-x), & x<0 \\ \ln (x), & x>0\end{cases}$

Example 4

$$
\text { Find } y^{\prime}, y=\log _{10}(2+\sin x)
$$

$$
\text { Example } 5 \quad \text { Find } y^{\prime}, y=\ln \left(\frac{x+1}{\sqrt{x-2}}\right)
$$

Example 3

Logarithmic Differentiation

The calculation of derivatives of complicated functions involving products, quotients or powers, can often be simplified by taking logarithms. The method used in the following example is called Logarithmic Differentiation.
Example $7 \quad$ Find $y^{\prime}, \quad y=\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2)^{5}}$
solution

Example 8

Find $y^{\prime}, y=x^{\sqrt{x}}$
solution
Take natural logarithms of both sides, and use the laws of logarithms to simplify.

Differentiate implicitly with respect to x.

- Solve the resulting equation for y^{\prime}.

Exercise 52. Find y^{\prime}, if $x^{y}=y^{x}$

Exercise $19 \quad y=\ln \left(e^{-x}+x e^{-x}\right)$

3-15 (odd), 21, 31, 43, 47

