CALCULUS 110
(3.1) Derivatives of Polynomials and Exponential functions
(3.2) The product and quotient rules

Dr. Rota Assad Hijazi

3.1 Derivatives of Polynomials and Exponential functions

In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions and the product, quotient rules.

Rules for Derivative:-
(1) $\frac{d}{d x}(c)=0 \quad \frac{d}{d x}(x)=1$
(2) $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
(3) $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$
(4) $\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$
(5) $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
(6) $\frac{d}{d x}(c f(x))=c \frac{d}{d x}(f(x))$
(7) $\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x}(f(x)) \pm \frac{d}{d x}(g(x))$
(8) $\quad(f(x) g(x))^{\prime}=f g^{\prime}+g f^{\prime}$
(9) $\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-g^{\prime} f}{g^{2}}$

Dr. Rola Asaad Hijazi

Examples $1+4$
Differentiate the following
(a) $f(x)=x^{6}$
(b) $f(x)=x^{1000}$
(c) $y=t^{4}$
(d) $\frac{d}{d r}\left(r^{3}\right)$
(e) $\frac{d}{d x} 3 x^{4}$
solution
\qquad

Example 2
Differentiate the following
(a) $f(x)=\frac{1}{x^{2}}$
(b) $y=\sqrt[3]{x^{2}}$
solution
\qquad
\qquad
\qquad
Example 5

$$
\frac{d}{d x}\left(x^{8}+12 x^{5}-4 x^{4}+10 x^{3}-6 x+5\right)
$$

Examples 3

Find equations of the tangent line and normal line to the curve $y=x \sqrt{x}$ at $(1,1)$.

solution

Examples 6

Find the points on the curve
$y=x^{4}-6 x^{2}+4$ where the tangent line is horizontal.

solution

$$
0
$$

Examples 8
If $f(x)=e^{x}-x$, find $f^{\prime}, f^{\prime \prime}$.

Example 4

$$
y=\frac{x^{2}+x-2}{x^{3}+6}
$$

solution

Example 5
Find an equation of the tangent line to the curve

$$
y=\frac{e^{x}}{1+x^{2}} \quad, \text { at }\left(1, \frac{1}{2} e\right)
$$

solution

(3.1) $3-31$ (odd) +37
(3.2) $3-33$ (odd)

